
Dialect Database Gateway 5.4a

Programmer's
Reference Guide

Dialect Database Gateway 5.4a Programmer's
Reference Guide
Part No.: DGG-360769-34PG
Product: Dialect Database Gateway 5.4a
Document: Programmer's Reference Guide
Date: April 2000
Revised for InterVoice IVR Clients

© 2000 Williams Communications Solutions, LLC. All rights reserved.
Williams brands, logos and product names are service marks or trademarks
of Williams Communications Solutions, LLC, registered in the U.S. and other
countries.

Under the copyright laws, this documentation may not be copied,
photocopied, reproduced, translated, or reduced to any electronic medium
machine readable form, in whole or in part, without the prior written
consent of Williams Communications Solutions, LLC.

Trademarks
Williams Communications Solutions, LLC has made every effort to supply
trademark information about company names, products and services
mentioned in this document.
• Dialect is a trademark of Williams Communications Solutions, LLC.
• Nortel, Meridian, and Symposium are trademarks of Northern

Telecomm.
• Intel and Pentium are registered trademarks of Intel Corporation.
• OS/2 is a trademark of IBM Corporation.
• SCO is a registered trademark of The Santa Cruz Operation, Inc.
• Solaris and Java are trademarks of SunSoft Microsystems, Inc.
• Windows, Windows NT, Visual Basic, ActiveX, and Microsoft are either

trademarks or registered trademarks of Microsoft Corporation.
• UNIX is a registered trademark in the United States and other

countries, licensed exclusively through X/Open Company, Ltd.
All other brand and product names are trademarks or registered trademarks
of their respective companies.

Notice
This document, as well as the software described in it, is furnished under
license and may be used or copied only in accordance with the terms of this
license or a nondisclosure agreement. Williams Communications Solutions,
LLC, makes no representations or warranties with respect to the contents or
use of this document, and specifically disclaims any express or implied
warranties, salability, merchantability or fitness for a particular purpose.
Williams Communications Solutions, LLC, also reserves the right to revise
the software and this document and make changes to its content, at any
time, without obligation to notify any person or entity of such revision or
changes.

 Dialect Database Gateway 5.4a Programmer's Reference Guide iii

Table of Contents

Introduction..1
Welcome to DBG .. 1

Open System Architecture .. 1
Channel Requests Using Named Pipes............................. 2
Database Support .. 3
Automatic Failure Recovery .. 3
Background Processing .. 3

About This Guide .. 3
Organization.. 3
Assumptions.. 4
Conventions Used .. 4

Technical Support ... 5

Installation and Distribution7
Database Gateway Box Contents 7
Requirements ... 8

Installation Prerequisites .. 8
Hardware and Software Requirements 8

Relevant Information .. 9
Installing Database Gateway ... 9

Installing the DBG Server ... 10
Installing the DBG API ... 12

Application Distribution ... 15

DBG Server Administration.......................................17
Working with the Configuration Tool 17

Configuration Tool Prerequisites 18
Starting and Closing the DBG Configuration Tool 18
Establishing a Connection to the Server 20
Working with Service Options 21

Starting and Stopping the Service 22
Refreshing the Service .. 24
Tracing the Service ... 25

Table of Contents

iv Dialect Database Gateway 5.4a Programmer's Reference Guide

Defining Licensing Options ... 26
Working with BPI Options... 28

Configuring a BPI.. 29
Modifying a BPI .. 31
Deleting a BPI .. 32

Working with Pipe Options ... 33
Configuring a Pipe .. 34
Modifying a Pipe ... 41
Changing the View.. 43
Deleting a Pipe ... 43

Alternate Methods of Starting, Stopping, and Pausing the
Service... 44

Client API Programming...47
Overview.. 47

Architecture... 47
Programming Examples.. 48
Compiling.. 49
Function Declarations... 49
Linking.. 49
Support for Variable-Length Columns............................ 50

Function Listing .. 51
DBGCCloseWorkarea.. 55
DBGCConnect .. 56
DBGCDisconnect.. 59
DBGCErrorMsg... 60
DBGCExecute .. 61
DBGCGetAPIVersion... 65
DBGCGetColData ... 69
DBGCGetColName.. 70
DBGCGetColSize .. 72
DBGCGetColType ... 73
DBGCGetODBCColType .. 75
DBGCGetODBCErrMsg .. 76
DBGCGetODBCErrMsgLen... 78
DBGCGetServerVersion .. 79
DBGCInitialize.. 82
DBGCLoadCommTimeouts.. 83
DBGCMoveFirst.. 85
DBGCMoveLast .. 86

Table of Contents

 Dialect Database Gateway 5.4a Programmer's Reference Guide v

DBGCMoveNext ... 87
DBGCMovePrevious.. 89
DBGCOpenWorkarea.. 90
DBGCReset.. 91
DBGCSetCommTimeouts .. 92
DBGCShutdown ... 94

Appendix A. Data Structures and Constants95
Data Structures .. 95

DBG_DATE.. 95
DBG_REQ.. 96
DBG_TIME .. 97
DBG_TIMESTAMP .. 97

Constants... 98
Sizes ... 98
Network Timeouts ... 99
Network Settings ... 100
Data Types.. 100

Appendix B. Condition Values.................................103

Appendix C. The mivrdbg User Function107
Overview.. 107

SQL Support.. 107
Workareas... 107
Background Processing .. 108

Configuration.. 109
Communication... 110
Interface Functions ... 110

Return Values.. 111
Data Types and Sizes... 111
OpenWorkarea .. 112
CloseWorkarea .. 113
ExecuteSQL... 114
MoveFirst .. 115
MoveLast .. 116
MoveNext.. 117
MovePrevious .. 118
GetColumnData ... 119
ExecuteSQLFromFile .. 125

Table of Contents

vi Dialect Database Gateway 5.4a Programmer's Reference Guide

Appendix D. DBG UserDLL for InterVoice IVR........129
Overview.. 129

Database support .. 129
SQL support .. 130
Workareas... 130
Background Processing .. 131
Communication.. 131

Installation and Configuration.. 132
Troubleshooting.. 134
Developing UserDLL forms in InterVoice InVision............ 134
Interface functions.. 135

OpenWorkarea .. 135
CloseWorkarea .. 136
ExecuteSQL... 137
MoveFirst .. 138
MoveLast .. 139
MoveNext.. 139
MovePrevious .. 140
GetColumnData ... 140

Data Formatting ... 141
ExecuteSQLFromFile .. 145

Appendix E. Licensing...149

Index ..151

 Dialect Database Gateway 5.4a Programmer's Reference Guide 1

Introduction

Welcome to DBG

Welcome to Dialect Database Gateway or DBG, a powerful
client/server gateway system providing transparent, cross-
platform access to multiple database engines.

With support for 32-bit Microsoft® Windows® platforms and
SCO® UNIX® systems, DBG simplifies access to data and
provides split-second system response to ensure that calling
applications receive replies to query requests in the event of
network or database failures.

Open System Architecture

Dialect Database Gateway hosts two components: a server
module and a client module.

The DBG Server (Server) is a Windows NT® service that
communicates SQL (Structure Query Language) statements
directly to database engines that follow the Open Database
Connectivity (ODBC) standard.

Client applications running on Windows platforms and SCO
UNIX use the DBG Application Programming Interface (API)
to send and receive requests for information through the
DBG Server. The DBG API can also (separately) support
OS/2®, Solaris™, Java™, and ActiveX® clients.

Introduction

2 Dialect Database Gateway 5.4a Programmer's Reference Guide

Channel Requests Using Named Pipes

DBG makes it easy for client applications to access
information by using "pipes" to channel requests and
connect to specific databases.

A pipe is a logical, named entity that connects to a database
engine (such as Oracle, Sybase, Microsoft Access, DB/2,
etc.) via a single ODBC driver, provided by the vendor of the
database. You assign pipe names and multiple pipe
connections using the DBG Configuration Tool. DBG takes
care of the connectivity to the database and effectively
insulates calling applications from connectivity details. In
addition, if the pipe was defined with multiple connections
(logins), DBG can also execute multiple requests to the same
pipe, in parallel.

Client applications identify the pipe name and construct a
query statement that is passed to the DBG Server via an API
call. Along with the statement, the application passes a pipe
name to which the statement is to be sent. The Server
software then directs the statement to the named pipe,
which is processed by the vendor's ODBC driver residing at
the other end of the pipe. (See Figure 1.)

Oracle

DB/2 on mainframe

3rd party
statistics

application

DBG
Server

Oracle
ODBC

DB/2
ODBC

Excel
ODBC

AccountingDB

HR

Stats

Excel Spreadsheet

Windows NT

RPC

TCP/
IP

TCP/IP Client

TCP/IP Client

RPC Client

Figure 1. DBG Connectivity

Introduction

 Dialect Database Gateway 5.4a Programmer's Reference Guide 3

Database Support

DBG was designed to support any database that provides a
32-bit ODBC driver for Windows NT.

Automatic Failure Recovery

In the event of a network and/or database failure, DBG
continuously attempts to reconnect to its databases. While
disconnected, DBG automatically queues requests from
applications until connection (to the named pipe) is restored.

Background Processing

DBG's powerful background processing capabilities include
waiting for a pipe to deliver information (if the statement
requires records to be returned), even in the event of a
network or database failure. If either one fails, DBG writes
all transient data to disk, reads all transient data into
memory, and then submits the statement for execution
again when the network or database returns.

DBG also includes facilities for limiting the number of records
returned from a database, even if the database itself does
not support this feature.

About This Guide

This Dialect Database Gateway 5.4a Programmer's
Reference Guide is written for developers who write
applications that need simpler access to one or more
database engines. It contains configuration information for
DBG and detailed descriptions of the system's API routines.
This Programmer's Reference Guide also provides guidelines
for using the DBG API routines and programming examples.

Organization

Besides this "Introduction," this Programmer's Reference
Guide contains the following chapters:

Introduction

4 Dialect Database Gateway 5.4a Programmer's Reference Guide

• "Installation and Distribution"—describes the
requirements for DBG, how to install the system's Server
and client software components, and identifies the
distribution files required for running an application that
uses the DBG API.

• "DBG Server Administration"—describes how to
configure and maintain the DBG Server.

• "Client API Programming"—describes the DBG API
function calls and provides examples in Visual Basic®

and Visual C++™.

• "Appendix A. Data Structures and Constants"—
describes common data structures and constants for the
system.

• "Appendix B. Condition Values"—lists possible
condition values and errors returned by the system.

• "Appendix C. The mivrdbg User Function"—
describes the user function and its function calls for SCO
UNIX clients.

• "Appendix D. DBG UserDLL for InterVoice IVR"—
describes the user function for InterVoice IVR and its
function calls for InterVoice IVR clients.

• "Appendix E. Licensing"—describes the software
licensing mechanism used by Dialect Database Gateway.

Assumptions

This Programmer's Reference Guide assumes that its readers
are familiar with application development tools, such as
Visual Basic® or C++®.

Conventions Used

This Programmer's Reference Guide uses the following
conventions:

• Parameters, settings, and variables look like this: callID.

Introduction

 Dialect Database Gateway 5.4a Programmer's Reference Guide 5

• Literals, error codes, and source code examples look like
this: callID, DBGCConnect.

• Referenced properties, events, and methods look like
this: MakeCall.

• Words used for emphasis and Windows conventions look
like this: OK, Start.

Technical Support
Technical support for Dialect Database Gateway is pursuant
to your contract or purchase agreement with Williams
Communications Solutions. Please use the section below to
record your contract or purchase agreement information.

Contract No.:

Date Purchased:

Sales
Representative:

Telephone:

License Key
Number:

Introduction

6 Dialect Database Gateway 5.4a Programmer's Reference Guide

 Dialect Database Gateway 5.4a Programmer's Reference Guide 7

Installation and Distribution

This chapter describes the:

• Dialect Database Gateway box contents.

• Licensing services offered by the Williams' License
Manager.

• Requirements for installing DBG.

• Installation procedures for the DBG Server and the DBG
client APIs.

• Required distribution files for an application using the
DBG API.

Database Gateway Box Contents

The Database Gateway box contains:

• A Dialect Suite CD-ROM.

• A hardware license key (also known as a dongle), or a
diskette containing the new hardware license key image.

• License Manager Installation Guide

• Dialect Database Gateway 5.4a Programmer's Reference
Guide (this manual).

The Dialect Suite CD-ROM contains the Database Gateway
Server software and installation kits for the Database
Gateway API software. It also contains this guide in Adobe
Acrobat Portable Document Format (PDF) and a text file,
README.TXT, which covers compatibility issues, late-
breaking news, usage tips, and information about Database
Gateway.

Installation and Distribution

8 Dialect Database Gateway 5.4a Programmer's Reference Guide

Requirements

This section describes what you need to install Database
Gateway, such as installation prerequisites, hardware and
software requirements, and related information.

Installation Prerequisites

Before installing Database Gateway, make sure that you
read and understand the following requirements:

• If you have a hardware license key, you must install it,
along with the Williams License Manager software
before you install Database Gateway. For hardware
license key and License Manager installation instructions,
refer to the License Manager Installation Guide.

• If you do not have a hardware license key, want to
evaluate the software, or plan to use a temporary
license keycode, contact your Williams Communications
Support representative.

Hardware and Software Requirements

Make sure you have the following requirements:

Component Requirements

Server • Processor and memory as required by the
32-bit Windows operating system installed
on the computer.

• Windows NT Server 4.0 with Service Pack 4
or higher.

• 20 MB free disk space (minimum
installation).

• 32 MB of RAM (minimum installation).

• ODBC Level 2 (or higher).

Installation and Distribution

 Dialect Database Gateway 5.4a Programmer's Reference Guide 9

Client API • Processor and memory as required by the
32-bit operating system installed on the
computer.

• Windows 95/98, Windows NT 4.0, or SCO
UNIX. (If you're interested in integrating
DBG software with other clients, such as
Windows 3.11, Windows for Workgroups,
OS/2, Java, Solaris, and so on, contact your
Williams representative.)

• A BSD (Berkeley Software Distribution)
Sockets compliant TCP/IP (Transmission
Control Protocol/Internet Protocol) stack on
all platforms. (DBG supports WinSock
(Windows Sockets) and WinSock2 on capable
Windows platforms.)

Relevant Information

In addition to the standard TCP/IP interface, DBG supports
Remote Procedure Calls (RPC) on Win32® (Windows NT,
Windows 95/98). Support also extends to local DBG clients
running on the same computer as the DBG Server. (The DBG
client makes use of TCP/IP or Named Pipes as the wire-line
protocol for RPC.)

On SCO UNIX for Meridian™ OPEN and Integrated IVR 2.0
and Symposium™ OPEN IVR 4.0, access to the DBG Server
is available through an interface (mivrdbg) implemented as a
user function. (See "Appendix C. The mivrdbg User
Function" for details.)

Installing Database Gateway

This section describes how to install both the server
software and the client API for DBG.

Installation and Distribution

10 Dialect Database Gateway 5.4a Programmer's Reference Guide

Installing the DBG Server

Make sure that you have met the hardware and software
requirements before installing the DBG Server. Also, make
sure that you know the name of the computer on which you
installed the License Manager and the network protocol that
the DBG Server will be using to connect to that computer.

Note: You need not know the name of the
computer on which you installed the License
Manager and the network protocol if you plan to
use a temporary license keycode.

! To install the DBG Server:

1. Run Windows NT and login as an administrator.

You must have administrative privileges to install the
DBG Server software. If you do not, please contact your
system administrator.

2. Choose from the following:

• If you're installing from compact disc, insert the
Dialect CD-ROM in the CD-ROM drive. If the
Williams' Dialect Software Suite web page opens in
your browser, select Database Gateway 5.4a
under "Dialect Suite," and then select Setup. When
the File Download dialog box displays, select "Open
it" or "Run the program from its current location,"
click OK and then proceed to step 5.

If the Williams' Dialect Software Suite web page
does not open in your browser, proceed to step 3.

• If you're installing from a 3.5-inch disk, insert the
DBG Server disk into drive A or B.

• If you're installing from a single directory, ensure
that all the installation files are in the same
directory.

3. Click the Start button and then click Run.

The Run dialog box displays.

Installation and Distribution

 Dialect Database Gateway 5.4a Programmer's Reference Guide 11

4. Depending on the type of medium you're using, choose
from the following options:

• If you're installing from CD-ROM, type
E:\DBGATEWY\SERVER\INSTALL\SETUP.EXE
(where E represents the drive letter of your CD-
ROM) and click OK.

• If you're installing from 3.5-inch disk, type
A:\SETUP.EXE (where A represents the drive letter
of your floppy disk drive) and click OK.

• If you're installing from a single directory, type
A:\DDD\SETUP (where A represents the drive
letter, and DDD is the name of the directory where
the installation files are located) and click OK.

5. Follow the on-screen instructions.

The setup program installs and configures the DBG
Server as a Windows NT Service (background process).
The DBG (service) will automatically start each time the
operating system reboots.

Note: The setup program's "Welcome" screen now
includes options for installing the Data Repository
Software Development Kit (SDK) and an extension
module for InterVoice-Brite. For more information about
the latter option, read "Appendix D. DBG UserDLL for
InterVoice IVR" beginning on page 129.

Figure 2. Run dialog box

Installation and Distribution

12 Dialect Database Gateway 5.4a Programmer's Reference Guide

Installing the DBG API

This section describes how to install the DBG client API on
32-bit Windows platforms and on SCO UNIX. For the latter,
and Meridian™ OPEN IVR, Meridian Integrated IVR 2.0, and
Symposium™ OPEN IVR 4.0, you must use the UNIX tar
utility to copy and extract the client API onto the IVR. The
client API is archived in a compressed format, which can
either be downloaded or installed from a 3.5-inch floppy
disk.

For installation information in other environments, please
contact your Williams Communications Solutions
representative.

! To install the DBG APIs on Windows platforms:

1. Run Windows.

2. Choose from the following:

• If you're installing from compact disc, insert the
Dialect CD-ROM in the CD-ROM drive. If the
Williams' Dialect Software Suite web page opens in
your browser, select Database Gateway 5.4a
under "Dialect Suite." Next, under "Installation,"
click Win32 Client Setup. When the File Download
dialog box displays, select "Open it" or "Run the
program from its current location," click OK, and
proceed to step 5.

If the Williams' Dialect Software Suite web page
does not open in your browser, proceed to step 3.

• If you're installing the client APIs from a 3.5-inch
disk, insert the appropriate DBG client API disk into
drive A or B.

• If you're installing from a single directory, ensure
that all the installation files are in the same
directory.

Installation and Distribution

 Dialect Database Gateway 5.4a Programmer's Reference Guide 13

3. In Windows 95/98 and Windows NT 4.0, click the Start
button, and then click Run. (Windows 95/98 and
Windows NT 4.0 automatically launch the installation
routine; skip to step 5 now.)

The Run dialog box displays. (See Figure 2 on page 11.)

4. Depending on the type of medium you're using, choose
from the following options:

• If you're installing from the CD-ROM, select the
subdirectory for the client platform on which you will
be installing the client API, and then type:
E:\DBGATEWY\CLIENT\INSTALL\SETUP.EXE
(where E represents the drive letter of your
CD-ROM, CLIENT represents the client platform,
and INSTALL represents the subdirectory in which
the client executable resides) and click OK.

• If you're installing from a 3.5-inch client API disk,
type A:\SETUP.EXE (where A represents the drive
letter of your floppy disk drive) and click OK.

• If you're installing from a single directory, type
C:\DDD\SETUP.EXE (where C represents the drive
letter, and DDD is the name of the directory where
the installation files are located) and choose OK.

5. Follow the on-screen instructions.

! To install the client APIs on SCO UNIX for the Meridian
Integrated IVR 2.0, or Meridian OPEN IVR 2.0, or
Symposium OPEN IVR 4.0:

1. Run SCO UNIX and log in for the appropriate IVR:

• For a Symposium OPEN or Meridian OPEN IVR, login
as nortel.

• For a Meridian Integrated IVR, login as vad.

For more information about these logins, contact your
system administrator or refer to your SCO UNIX
documentation.

Installation and Distribution

14 Dialect Database Gateway 5.4a Programmer's Reference Guide

2. Check whether the appropriate .tar file already exists on
the IVR's hard drive. Type:

find / -name xxx_dg54.tar.Z –print

where xxx_dg54.tar.Z represents one of the
following tar files, and then press Enter:

• mo2_dg54.tar.Z for the Meridian Open IVR 2.x

• mi2_dg54.tar.Z for the Meridian Integrated IVR 2.x

• so4_dg54.tar.Z for the Symposium Open IVR 4.0

If the tar file exists, you need to decompress and extract
the client API files; skip to step 5. If the tar file does not
exist on the IVR's hard drive, continue with step 3.

3. Insert the 3.5 inch DBG client API disk into the floppy
drive.

4. Copy the appropriate xxx_dg54.tar.Z file into the
correct location. Type:

tar –xvf /dev/rfd0135ds18 xxx_dg54.tar.Z

where xxx_dg54.tar.Z represents the compressed
tar file for the appropriate IVR and press Enter.

5. Decompress the tar file. Type:

compress –d xxx_dg54.tar.Z

where xxx_dg54.tar.Z represents the compressed
tar file, and press Enter.

6. Extract the DBG client API files. Type:

tar -xvf xxx_dg54.tar

where xxx_dg54.tar represents the tar file, and press
Enter.

7. Remove the 3.5-inch DBG client API disk from the drive.

8. Create the mivrdbg.ini file to identify the Windows NT
server hosting DBG (see "Configuration" on page 109).

Installation and Distribution

 Dialect Database Gateway 5.4a Programmer's Reference Guide 15

Application Distribution

Applications developed in association with the DBG APIs
require certain C run-time .DLL files to ensure that they work
properly. Under the terms of your DBG software license
agreement, you may reproduce and distribute the C run-time
.DLL file shown in Table 1.

Note: You may not distribute DBGS.LIC (the DBG
license file).

Table 1. Distribution File

Platform Filename

32-bit Windows DBGAPI32.DLL

Distributed applications also require a separate Williams
License Manager and a hardware key to properly function.
(See "Appendix E. Licensing" on page 149 for more
information.)

Installation and Distribution

16 Dialect Database Gateway 5.4a Programmer's Reference Guide

 Dialect Database Gateway 5.4a Programmer's Reference Guide 17

DBG Server Administration

Part of installing DBG is configuring the Server component
and maintaining its configuration. This chapter introduces
the DBG Configuration Tool (Configuration Tool), which was
automatically installed when you installed the Server
software; it will help you manage the DBG Server (service).
This chapter also explains how to:

• Start and close the Configuration Tool.

• Configure service, licensing, pipe, and data handling
options for the DBG service and start, stop, and pause
the service.

Working with the Configuration Tool

After installing DBG, there are several configuration steps to
be performed before the DBG Server is ready to provide
transparent, cross-platform access to multiple database
engines. You can use the Configuration Tool to perform all
configuration tasks, including:

• Administer the service on a local or networked
computer.

• Start, stop, and modify the service.

• Designate tracing options to aid in debugging.

• Enter keycode options to validate each license of the
software and to ensure technical support.

• Define and modify pipe information to external data-
bases.

The default settings for
the DBG Server are taken
from the Windows NT
Registry.

DBG Server Administration

18 Dialect Database Gateway 5.4a Programmer's Reference Guide

• Define error handling instructions for broken pipes that
may be encountered by the Server.

Configuration Tool Prerequisites

Before using the Configuration Tool, make sure that you:

• Have administrative privileges on the host machine on
which the DBG Server software resides. (See your
system administrator to determine your privileges.)

• Are familiar with 32-bit ODBC Level-2 (or higher) drivers
for Windows NT and vendor/driver-specific configura-
tions.

• Know the user IDs and passwords to the databases that
DBG is to access.

• Are familiar with creating SQL statements.

• Are familiar with Domain Name Services (DNS) protocol
and system data sources.

Starting and Closing the DBG Configuration Tool

This section describes how to start and close the
Configuration Tool.

! To start the Configuration Tool:

1. Run Windows and login as an administrator.

You must have administrative privileges to use the DBG
Configuration Tool. If you do not, please contact your
system administrator.

2. In Windows NT 4.0, click the Start button, and then
click Programs | Dialect | Database Gateway
Server | Configuration.

The DBG Configuration dialog box displays. (See Figure
3.)

DBG Server Administration

 Dialect Database Gateway 5.4a Programmer's Reference Guide 19

! To close the Configuration Tool:

• Click Exit.

or

• Press Alt+F4.

or

• Click the application's control-menu box.

Figure 3. DBG Configuration dialog box (upon startup)

DBG Server Administration

20 Dialect Database Gateway 5.4a Programmer's Reference Guide

Establishing a Connection to the Server

Before you can configure the DBG service for your
organization's needs, you must establish a connection to the
Server.

! To establish a connection to the DBG Server:

1. Start the Configuration Tool (as described in "Starting
and Closing the DBG Configuration Tool" on page 18).

The DBG Configuration dialog box displays. (See Figure
3 on page 19.) The bold caption "Not Connected"
indicates that you have yet to connect to the DBG
Server. This caption disappears from view once that
connection is made.

2. In the Host box, enter the name of the computer on
which the DBG Server software resides or select it from
the drop-down list.

The default is (local)—the local computer. The Host
drop-down list will only contain host names if a previous
session successfully connected to a host.

3. Click Connect to establish a session.

The Configuration Tool attempts to establish a connec-
tion to the host. Once connected, the Connect button
becomes disabled, and the Disconnect button becomes
enabled. The Disconnect button can be used to
disconnect the current host, and allow you to choose a
new host. The DBG Configuration dialog box also opens
revealing its four tabs:

• Service tab—used to identify the status of the DBG
Server, start, pause, or stop the service, and define
tracing preferences. (See Figure 4 on page 21.)

• Licensing tab—used to enter the License Server
name and/or keycode used to ensure the licensing,
security, and support for DBG. (See Figure 5 on
page 27.)

Even if the host is invalid
or currently unavailable,
the Configuration Tool
will attempt to establish a
connection to the remote
computer.

DBG Server Administration

 Dialect Database Gateway 5.4a Programmer's Reference Guide 21

• Pipes tab—used to define the physical connection
between the DBG Server and the database servers
to which the service will connect to transmit data.
(See Figure 9 on page 34.)

• BPI tab—used to define and manage error-handling
instructions for broken pipes encountered by the
Server. (See Figure 6. on page 29.)

Working with Service Options

The Service tab opens the Service page, which identifies the
operating status of the DBG Server. It also contains options
to start, refresh, or stop, and track and debug the service.
(See Figure 4.)

In the Status area, the LED icon indicates the state of the
service by color and designation:

• Green indicates that the service is currently running.

Figure 4. Service page

LED icon identi-
fying the state of
the service.

DBG Server Administration

22 Dialect Database Gateway 5.4a Programmer's Reference Guide

• Yellow indicates that the service has been paused.

• Red indicates that the service has been stopped.

• Gray indicates an unknown state.

The next few sections describe how to configure settings for
the DBG service.

Starting and Stopping the Service

This section describes how to use the Configuration Tool to
start and stop the DBG service. Alternatively, you can also
start, stop, and even pause the service using the Windows
NT Services window or the Windows NT NET command.
(See "Alternate Methods of Starting, Stopping, and Pausing
the Service" on page 44 for details.)

! To start the service:

1. Start the Configuration Tool and connect to the DBG
Server.

If necessary, refer to "Starting and Closing the DBG
Configuration Tool" on page 18 and "Establishing a
Connection to the Server" on page 20.

2. If it's not already open, select the Service tab to display
the Service page. (See Figure 4 on page 21.)

3. In the Status area, check the state of the service and act
accordingly:

• If the LED icon is green and indicates "Running" no
action is needed; the service has already been
started.

• If the LED icon is red and indicates "Stopped," click
Start.

This action starts the service, as indicated by the
change in the LED icon, and disables the Start
button.

DBG Server Administration

 Dialect Database Gateway 5.4a Programmer's Reference Guide 23

• If the LED icon is yellow and indicates "Paused," first
click Stop, and then wait a few moments and click
Start.

This action initially stops, and then starts the
service, as indicated by the changes in the LED icon.
Also, stopping the service disables the Stop button,
while starting the service disables the Start button.

• If the LED icon is gray and indicates "Unknown,"
click Refresh.

This action instructs the Configuration Tool to check
the most recent state of the service, and update the
LED icon. If the LED icon indicates that the service is
running, no further action is needed. If the LED icon
indicates that the service has stopped, click Start to
start the service.

4. Click Exit to close the Configuration Tool.

! To stop the DBG service:

1. Make sure that client applications are not running.

2. Start the Configuration Tool and connect to the DBG
Server.

3. If it's not already open, select the Service tab to display
the Service page. (See Figure 4 on page 21.)

4. In the Status area, check the state of the service and act
accordingly:

• If the LED icon is green and indicates "Running," or
if the LED icon is yellow and indicates "Paused," click
Stop.

This action stops the service and disables the Stop
button.

• If the LED icon is red and indicates "Stopped," no
action is needed; the service has already been
stopped.

Caution:
Stopping the service
disconnects all users,
including administrators.
Before stopping the
service, send a network
broadcast to alert users
or schedule the stop at a
more convenient time.

DBG Server Administration

24 Dialect Database Gateway 5.4a Programmer's Reference Guide

• If the LED icon is gray and indicates "Unknown,"
click Refresh.

This action instructs the Configuration Tool to check
the most recent state of the service, and update the
LED icon. If the LED icon indicates that the service is
running, click Stop to stop the service. If the LED
icon indicates that the service is stopped, no further
action is needed.

5. Click Exit to close the Configuration Tool.

Refreshing the Service

Refreshing allows you to review the most current state of
the service, manually or automatically.

! To refresh the service:

1. Start the Configuration Tool and connect to the DBG
Server.

If necessary, refer to "Starting and Closing the DBG
Configuration Tool" on page 18 and "Establishing a
Connection to the Server" on page 20.

2. If it's not already open, select the Service tab to display
the Service page. (See Figure 4 on page 21.)

3. Choose one of the following:

• To manually check the state of the service, click
Refresh.

• To set up an automatic check on the state of the
service every five seconds, select the Auto Refresh
box. (Selecting this option automatically disables the
Refresh button.)

4. Click Exit to close the Configuration Tool.

DBG Server Administration

 Dialect Database Gateway 5.4a Programmer's Reference Guide 25

Tracing the Service

Tracing creates logs of informational messages and calls to
the DBG Server. With the Configuration Tool, you can set
(optional) tracing options, which may be used as an aid in
debugging and troubleshooting the service. For example, if
the DBG service fails to start, you can use the trace window
to learn why the service stopped.

! To set tracing options:

1. Start the Configuration Tool and connect to the DBG
Server.

If necessary, refer to "Starting and Closing the DBG
Configuration Tool" on page 18 and "Establishing a
Connection to the Server" on page 20.

2. If it's not already open, select the Service tab to display
the Service page. (See Figure 4 on page 21.)

3. Select the Enable tracing box (under the Tracing area)
to trace the service.

4. Next, define the desired tracing options:

• For detailed trace information, enter the level of
detail you want in the Trace level box. The default
is 99, which entails all trace messages. Typical trace
level values include:

• 1 for only errors.

• 2 for both errors and warning messages.

• 3 for errors, warning and informational
messages.

• 4-99 for varying degrees of errors, warning,
informational, debugging, and user-defined
messages.

• If you want to open a trace window and view trace
information in real-time, click the Open button. (To
close a trace window, simply click the Close button
on the trace window itself, or on the Service page.)

DBG Server Administration

26 Dialect Database Gateway 5.4a Programmer's Reference Guide

• To write trace information to a file, select the Trace
to a file box and enter the directory path and file
name of the trace file in the Trace file name box.
The default trace file, DBGS.TRC, is located in the
same directory in which the DBG Server executable
resides. You can also specify a different trace file by
entering its location. (Universal naming conventions
(UNC) and remote files are not supported.)

Note: Enabling tracing with maximum trace
level details (e.g., 4-99) or writing trace infor-
mation to a file may impact system perfor-
mance.

5. To accept and save your entries, click Apply.

6. To ensure that the new settings take effect, you must
stop and then restart the service. See "Starting and
Stopping the Service" on page 22 for more information.

Defining Licensing Options

At setup, you were given a choice to enter the location of
the License Manager, or enter a keycode. The License
Manager provides protection and verification of the
individual Server software license; a keycode enables you to
evaluate DBG for a limited time period.

To modify the location of the License Manager server, or
update a keycode, you need to use the Licensing tab to
open the Licensing page. (See Figure 5.)

DBG Server Administration

 Dialect Database Gateway 5.4a Programmer's Reference Guide 27

! To specify or change your licensing information:

1. Start the DBG Configuration Tool and connect to the
DBG Server.

If necessary, refer to "Starting and Closing the DBG
Configuration Tool" on page 18 and "Establishing a
Connection to the Server" on page 20.

2. Select the Licensing tab to display the Licensing page.
(See Figure 5.)

3. If you know the location of your License Manager
Server:

a) Enter the name of the server in the Server box.

b) Pull down the Transport drop-down list and select
the protocol to communicate with the License
Manager Server. TCP/IP is selected by default.

Figure 5. Licensing page

DBG Server Administration

28 Dialect Database Gateway 5.4a Programmer's Reference Guide

4. If you do not know the location of, or have not installed
the License Manager, enter a valid keycode in the
Temporary license keycode box. The default is
(none).

Make sure that you enter the keycode exactly as it was
presented to you. If you do not have a valid keycode,
you may obtain a temporary one (limiting the time
period that the service is available) from your Williams
Communications Support representative.

5. To apply and save the licensing information or keycode,
click Apply.

6. To ensure that the new settings take effect, you must
stop and then restart the service. See "Starting and
Stopping the Service" on page 22 for more information.

Working with BPI Options

A BPI identifies a broken pipe indicator, which contains error
handling instructions for problematic queries through pipes
to specific database engines.

DBG relies on a user-specified BPI for resolving errors that
may occur when submitting a statement to a database. If a
database's ODBC driver returns one or more error codes that
match the instructions in a specified BPI, the Server
perceives the error as critical and sends an error message
back to the calling application. If the ODBC driver returns
error codes that do not match any of those specified in the
BPI, DBG considers the error as insignificant and simply
retries the query.

You can use the BPI tab to open the BPI page to specify and
manage BPIs for DBG. (See Figure 6 on page 29.)

DBG Server Administration

 Dialect Database Gateway 5.4a Programmer's Reference Guide 29

Configuring a BPI

This section describes how to set up and define broken pipe
indicators for error handling to specific database engines. To
perform this task, you should be well-versed in ODBC device
driver configurations.

! To define a BPI:

1. Start the Configuration Tool and connect to the DBG
Server.

If necessary, refer to "Starting and Closing the DBG
Configuration Tool" on page 18 and "Establishing a
Connection to the Server" on page 20.

2. Select the BPI tab to display the BPI page. (See Figure 6.)

3. Click New.

The New BPI dialog box displays. (See Figure 7.)

Figure 6. BPI page

DBG Server Administration

30 Dialect Database Gateway 5.4a Programmer's Reference Guide

4. Define the properties for the new BPI:

• In the BPI Name box, enter the name you want to
assign to the BPI (required). For example, type: MS
Oracle 6.5.

For each BPI you create, each BPI Name must be
unique.

• In the Definition box, enter a string identifying
which ODBC status codes and which native error
codes DBG should consider critical (required).

An ODBC status code typically consists of five or six
alphanumeric characters, while a native error code is
typically a number.

Syntax rules for BPI definitions require you to
distinguish ODBC status codes from native error
codes by separating the two with a comma (,). For
example, 04001,134 indicates that the returned
error must match both the specified ODBC status
code (04001) and the specified native error code
(134). If you prefer, you may specify only one code,
provided that you include the comma to distinguish
one code from the other. For example, 04001,
states that the returned error must match the
specified ODBC status code (04001).

Figure 7. New BPI dialog box

DBG Server Administration

 Dialect Database Gateway 5.4a Programmer's Reference Guide 31

In addition, syntax rules require multiple BPI
definitions to be separated with a caret (^). For
example, 0S003,^,1026 states that the returned
error must match either the specified ODBC status
code (0S003), or the native error code (1026).
(Notice the use of a comma distinguishing the ODBC
status code from the native error code in each
instruction.)

5. Click OK when you are done.

6. To accept and save the BPI, click Apply.

7. To ensure that the new settings take effect, you must
stop and then restart the service. For more information,
see "Starting and Stopping the Service" on page 22.

Modifying a BPI

Modifying a BPI allows you to reconfigure the properties of
an existing BPI.

! To modify an existing BPI:

1. Start the Configuration Tool and connect to the DBG
Server.

If necessary, refer to "Starting and Closing the DBG
Configuration Tool" on page 18 and "Establishing a
Connection to the Server" on page 20.

2. Select the BPI tab to display the BPI page. (See Figure 6
on page 29.)

3. Select the broken pipe indicator you want to modify and
click Edit.

The Edit BPI dialog box displays the selected BPI's
properties. (See Figure 8 on page 32.)

DBG Server Administration

32 Dialect Database Gateway 5.4a Programmer's Reference Guide

4. To modify the BPI's name or definition, place the cursor
in the entry you want to change, and then append or
delete the current information by entering the new
information.

5. Click OK when you are done.

6. To accept and save your changes, click Apply.

7. To ensure that the new settings take effect, you must
stop and then restart the service. See "Starting and
Stopping the Service" on page 22 for more information.

Deleting a BPI

Deleting a BPI permanently removes an existing BPI. You
cannot delete a BPI if it is in use by a pipe; if the pipe is
configured by the BPI, it cannot be deleted.

! To delete an existing BPI:

1. Start the Configuration Tool and connect to the DBG
Server.

If necessary, refer to "Starting and Closing the DBG
Configuration Tool" on page 18 and "Establishing a
Connection to the Server" on page 20.

Figure 8. Edit BPI dialog box

DBG Server Administration

 Dialect Database Gateway 5.4a Programmer's Reference Guide 33

2. Select the BPI tab to display the BPI page. (See Figure 6
on page 29.)

3. Select the broken pipe indicator you want to remove and
click Delete.

A message prompt displays, asking you to confirm the
BPI's removal.

4. Click Yes to delete the selected BPI.

The selected BPI and all of its properties are deleted.

5. To accept and save your changes, click Apply.

6. To ensure that the new settings take effect, you must
stop and then restart the service. See "Starting and
Stopping the Service" on page 22 for more information.

Working with Pipe Options

To connect to a specific database, DBG requires a defined
pipe connection to that database.

A "pipe" is a named entity through which applications using
the DBG API may execute SQL (Structured Query Language)
or related statements, which can be understood by the
underlying database. A pipe opens a link to a specific
database, creates a connection, and allows DBG to send and
retrieve information from that database back to the calling
application.

Use the Pipes tab to open the Pipes page to name and
define pipe properties for a specific database. (See Figure 9
on page 34.)

DBG Server Administration

34 Dialect Database Gateway 5.4a Programmer's Reference Guide

Configuring a Pipe

This section describes how to set up and define pipe connec-
tions and SQL (or other) statements directed toward a
specific database engine. To perform this task, you should
be well-versed in ODBC device driver and system DSN
configurations.

! To define a pipe:

1. Start the Configuration Tool and connect to the DBG
Server.

If necessary, refer to "Starting and Closing the DBG
Configuration Tool" on page 18 and "Establishing a
Connection to the Server" on page 20.

2. Select the Pipes tab to display the Pipes page. (See
Figure 9.)

3. Click New.

Use the Pipes tab to add,
modify, and delete pipes
to external databases. To
customize the way in
which pipes are
displayed, refer to the
"Changing the View"
section.

Figure 9. Pipes page

DBG Server Administration

 Dialect Database Gateway 5.4a Programmer's Reference Guide 35

The New Pipe dialog box displays the Required page.
(See Figure 10.)

4. Use the Required page to define the pipe and its
properties:

a) Select the Active box to activate the pipe
connection to the database (recommended).

By default, this option is unchecked, indicating that
the pipe is inactive. When a pipe connection is
disabled, the Pipes page will overlay an "X" on the
inactive pipe. (See Figure 9 on page 34.)

b) In the Pipe name box, specify the name of the pipe
(required).

The maximum length for a pipe name is 33 charac-
ters. We recommend that you enter a name relevant
to the database you want to access. For example,
you may want to name a pipe "HumanRes" because
it leads to a human resources database.

c) In the Connect string box, specify a valid ODBC
connection string for the database driver (required).

Figure 10. New Pipe dialog box - Required page

DBG Server Administration

36 Dialect Database Gateway 5.4a Programmer's Reference Guide

A connect string typically contains one long string with-
out any spaces, specified as:
DSN=<system_dsn_name>;UID=<user_id>;
PWD=<password>;DATABASE=<database name>

The DSN parameter (required) defines the DSN
(data source network) on which the database
resides; it must be a valid system DSN, previously
configured using the 32-bit ODBC applet in the
Windows NT Control Panel.

The UID and PWD parameters (optional) identify the
user name (ID) and the password (PWD) needed to
log into the database; both are case-sensitive. Also,
these entries must have sufficient rights to allow
DBG client applications to access the database.

The DATABASE parameter (optional) identifies the
name of the database for those systems that
support multiple databases within the same engine,
such as Microsoft SQL Server, Oracle, Sybase, and
Informix.

d) In the Connections box, specify the number of
connections (or logins) to the database (required).

The number of connections allows DBG to simulta-
neously execute multiple statements along the same
pipe, in parallel.

e) Select the Show connection information when
connected box to include the database connection
in the trace.

f) In the Use BPI box, identify which broken pipe
indicator to use to determine critical errors on the
pipe (required).

You must define a BPI before you can select one;
see "Configuring a BPI" on page 29 for more
information. Leaving this area blank indicates that
DBG should use a generic BPI (default).

Not all ODBC drivers
support the DATABASE
parameter; we recom-
mend including it to allow
the ODBC driver to re-
attach to the correct
database within an
engine in the event of a
reconnection.

DBG Server Administration

 Dialect Database Gateway 5.4a Programmer's Reference Guide 37

g) In the Comments box, specify any remarks about
the pipe (optional).

5. Click on the Health check tab to display the Health
Check page. (See Figure 11.)

6. Use the Health Check page to periodically determine the
connectivity status of the database and/or network:

a) In the Interval box, specify how many milliseconds
to wait before submitting a query to the database.

The default value is 5000 milliseconds (or 5 seconds;
recommended).

b) In the SQL box, specify one or more query statements.

Each query must be created in a language that the
database understands (SQL or otherwise). Refer to
the database's documentation for details.

7. Click on the Tuning tab to display the Tuning page. (See
Figure 12 on page 38.)

Figure 11. New Pipe dialog box - Health Check page

Periodically submitting a
query statement to the
database allows DBG to
use the previously speci-
fied BPI (in the Required
tab) to determine when a
network or database
error occurs and to react
by automatically taking
the pipe offline and
attempting a reconnec-
tion.

DBG Server Administration

38 Dialect Database Gateway 5.4a Programmer's Reference Guide

8. The Tuning page contains the timing parameters for
connecting to a database. The following describes each
parameter:

a) In the Availability wait period box, specify the
number of milliseconds that DBG should wait for an
available pipe connection.

The default value is 5000 milliseconds (or 5
seconds; recommended). If a connection is not
available within the specified time, DBG returns an
error code to the calling application.

b) In the Lock wait period box, specify the number
of milliseconds that other applications must abide by
before using the same pipe connection.

The default value is 50 milliseconds (recommended).
If a connection cannot be locked within the specified
time, DBG returns an error code to the calling appli-
cation.

Figure 12. New Pipe dialog box - Tuning page

We recommend you leave
the Tuning page defaults
unless otherwise directed
by a member of Williams
Technical Support.

DBG Server Administration

 Dialect Database Gateway 5.4a Programmer's Reference Guide 39

c) In the Auto connect interval box, specify the
number of milliseconds that DBG should wait
between repeated attempts to reconnect to the
database.

The default value is 5000 milliseconds (or 5
seconds; recommended). The pipe is not available
until connections within the pipe are opened to the
database.

d) In the Background retry interval box, specify the
number of milliseconds that DBG should wait
between attempts to send SQL statements
scheduled for background execution.

The default value is 15000 milliseconds (or 15
seconds; recommended).

e) In the Broken pipe retry period box, specify the
number of milliseconds that DBG should wait
between attempts to retry SQL statements that
failed due to a broken pipe.

The default value is 5000 milliseconds (or 5
seconds; recommended). If the retry is not executed
within the specified time, DBG returns an error code
to the calling application.

f) In the Execution timeout box, specify the time in
milliseconds in which a SQL statement may be
executed before DBG cancels the query.

The default value is 5000 milliseconds (or five
seconds; recommended). If the statement is not
executed within the specified time, DBG returns an
error code to the calling application.

g) In the Hung operation timeout box, specify the
number of milliseconds that the operation may take
before DBG cancels the operation and performs an
automatic shutdown.

The default value is 60000 milliseconds (or one
minute; recommended). If the operation exceeds

DBG Server Administration

40 Dialect Database Gateway 5.4a Programmer's Reference Guide

the specified time, DBG returns an error code to the
calling application and performs an automatic
shutdown.

h) In the Connect Interval box, specify the number
of milliseconds that DBG should pause in between
connection attempts.

The default value is 500 milliseconds (recom-
mended.) A higher number may result in excessive
retries or impact performance.

i) In the Max consecutive errors box, specify the
maximum number of successive errors that DBG
may encounter.

The default value is zero. If the number of
successive errors exceed the specified amount, DBG
returns an error code to the calling application.

9. If needed, select the Threaded SQL Execution box to
specify threaded SQL execution. (We recommend that
you select this option only if you are experiencing
problems with the database driver.)

The default is turned off. Selecting this option starts a
new thread every time a SQL statement needs to be
executed.

10. Select the Debug SQL statements box to include
executed SQL statements in a trace window.

The default is turned off.

11. Select the Use Windows Messaging box to use
Windows messaging to access an ODBC driver.

The default is turned off.

12. To reset each of the tuning parameters back to their
respective defaults, click Reset All.

13. Click OK when you are done.

14. To accept and save the pipe properties, click Apply.

DBG Server Administration

 Dialect Database Gateway 5.4a Programmer's Reference Guide 41

15. To ensure that the new settings take effect, you must
stop and then restart the service. See "Starting and
Stopping the Service" on page 22 for more information.

Tip: If the service fails to start after configuring a
pipe, check the trace file. If the problem is due to
a hung operation on a pipe connection, increase
the Hung Operation Timeout value, and then
click Apply, reboot the system and restart the
service.

Modifying a Pipe

Modifying a pipe allows you to reconfigure the properties for
an existing pipe.

! To modify an existing pipe:

1. Start the Configuration Tool and connect to the DBG
Server.

If necessary, refer to "Starting and Closing the DBG
Configuration Tool" on page 18 and "Establishing a
Connection to the Server" on page 20.

2. Select the Pipes tab to display the Pipes page. (See
Figure 9 on page 34.)

3. Select the pipe you wish to modify and click Edit.

The Edit Pipe dialog box opens to the Required page,
which displays the selected pipe's current settings.

DBG Server Administration

42 Dialect Database Gateway 5.4a Programmer's Reference Guide

4. To modify the selected pipe:

a) Select the tab that holds the settings you want to
change. Click on either the Required, Health Check
or Tuning tab.

b) Place the cursor in the entry you want to change,
and then append or delete the current information
by entering new information. To reset each of the
tuning parameters back to their respective defaults,
click Reset All.

c) Click OK when you are done.

5. To accept and save your changes, click Apply.

6. To ensure that the new settings take effect, you must
stop and then restart the service. See "Starting and
Stopping the Service" on page 22 for more information.

Figure 13. Edit Pipe dialog box - Required page

DBG Server Administration

 Dialect Database Gateway 5.4a Programmer's Reference Guide 43

Changing the View

To customize the appearance of existing pipes in the Pipes
tab, you can change the way in which pipes are viewed.

! To customize the view for existing pipes:

1. Start the Configuration Tool and connect to the DBG
Server.

If necessary, refer to "Starting and Closing the DBG
Configuration Tool" and "Establishing a Connection to
the Server."

2. Select the Pipes tab to display the Pipes page. (See
Figure 9 on page 34.)

3. To specify how pipes are displayed, select one of the
following options from the View drop-down list:

• Large Icons displays pipes by using large icons.

• Small Icons displays pipes by using small icons.

• List displays pipes in a sequential list.

• Details displays information about each pipe.

4. To accept and save your changes, click Apply.

5. To ensure that the new settings take effect, you must
stop and then restart the service. See "Starting and
Stopping the Service" on page 22 for more information.

Deleting a Pipe

Deleting a pipe permanently removes an existing pipe
connection from the DBG registry.

! To delete an existing pipe:

1. Start the Configuration Tool and connect to the DBG
Server.

If necessary, refer to "Starting and Closing the DBG
Configuration Tool" on page 18 and "Establishing a
Connection to the Server" on page 20.

DBG Server Administration

44 Dialect Database Gateway 5.4a Programmer's Reference Guide

2. Select the Pipes tab to display the Pipes page. (See
Figure 9 on page 34.)

3. Select the pipe you wish to remove and click Delete.

A message prompt displays, asking you to confirm the
pipe's removal.

4. Click Yes to delete the selected pipe.

The selected pipe and all of its configurations are
deleted.

5. To ensure that the new settings take effect, you must
stop and then restart the service. See "Starting and
Stopping the Service" on page 22 for more information.

Alternate Methods of Starting, Stopping, and
Pausing the Service

In the previous section, you learned how to start and stop
the service using the Configuration Tool. This section offers
alternate methods for starting, stopping, and even pausing
the DBG service using the Windows NT Services window or
the Windows NT NET command on the computer in which
the service resides.

! To start, stop, or pause the DBG service via the Services
window:

1. On Windows NT 4.0, click the Start button, choose
Settings, and then select Control Panel.

2. Double-click on the Services icon.

The Services dialog box (not shown) displays.

3. Select "Dialect Database Gateway Server" and then,
depending on the status listed in the Status column,
choose which operation you wish to perform:

a) If the Status column contains no status or "Stopped,
click Start to start the service.

DBG Server Administration

 Dialect Database Gateway 5.4a Programmer's Reference Guide 45

b) If the Status column contains "Paused," click Stop
to stop the service or Continue to restart the ser-
vice.

c) If the Status column contains "Started," click Pause
to suspend the service or Stop to stop the service.

4. To change the service's startup settings, consult your
Windows NT manual for additional information.

Service startup settings take effect after the computer
reboots and the service has been started. In addition, a
running service must be stopped and restarted if
settings change. However, before making changes to
any service, make sure that you understand startup
options for Windows NT services; configuring the DBG
service with invalid startup options may render it
unusable.

5. To accept and save your entries, click Close.

! To start, stop, pause and continue the DBG service via
the Windows NT NET command:

1. Open a Windows NT command prompt window.

If necessary, consult your Windows NT manual for
additional information. Make sure that you use the NT
command prompt, not an MS-DOS command prompt.
Windows NT's DOS command prompt does not support
all the features of the NT command prompt.

2. Depending on which operation you wish to perform,
type the following at the command prompt:

a) To start the service:

• Type NET START DBGS.

• Press Enter.

b) To stop the service:

• Type NET STOP DBGS.

• Press Enter.

DBG Server Administration

46 Dialect Database Gateway 5.4a Programmer's Reference Guide

c) To pause the service:

• Type NET PAUSE DBGS.

• Press Enter.

d) To continue the service:

• Type NET CONTINUE DBGS.

• Press Enter.

 Dialect Database Gateway 5.4a Programmer's Reference Guide 47

Client API Programming

This chapter describes the API functions that client
applications can use to access databases via DBG Servers.

Note: While the DBG Server is Unicode compliant,
version 5.4a of the DBG client API does not
support Unicode or Double Byte Character Set
(DBCS) character data. Character data in Unicode
or DBCS client applications must be converted to
ANSI format before calling the API functions.

Overview

Architecture

The architecture of the API is based on a set of functions
that allow client applications to interact with the DBG
system. Most API functions are client based (that is, they do
not execute on the Server).

Functions that execute locally (on the client) do so primarily
with a "workarea." A workarea is a block of reserved
memory where data retrieved from a database, status
codes, and other management information is stored. A client
application can open as many workareas as it wishes, using
each one to communicate with one or more pipes on the
Server.

The base functionality of the DBG system is provided
through a set of APIs that communicate with the Server
using TCP/IP. For 32-bit Windows platforms, the library
offers RPC versions of the available functions, allowing client

Client API Programming

48 Dialect Database Gateway 5.4a Programmer's Reference Guide

applications to use RPC, rather than base TCP/IP as the
communications medium.

Most API functions take a communication handle as a
parameter. This handle, assigned when connecting to a
Server, maps either to a TCP/IP socket or RPC session
(Win32 platforms only) on the client, and is used to
communicate with a particular Server.

Note: With the unification of the TCP/IP and RPC
versions of the API functions in DBG 5.0 and
higher, almost all API functions look the same.
Client communication with the server over the
network is determined upon the initial connection
to the server. Upon establishing communication,
the API returns a handle, which dictates the type
of communications medium in use. Because each
handle has its own communications medium, it is
conceivable that a client may have multiple
connections using either base TCP/IP or RPC as
the communications medium.

The API library supports automatic reconnectivity to the
Server. Failover to backup systems is not currently available.

As of this writing, only one function (DBGCExecute)
communicates with the Server software across the network.
All other functions affect the local machine only. Use of
network handles and errors in practically all functions (even
when not needed) is to allow for future expansion.

Programming Examples

The examples in this chapter are for C/C++ and Visual Basic
only.

Client API Programming

 Dialect Database Gateway 5.4a Programmer's Reference Guide 49

Compiling

The dbgcapi.h header file is required for building a C/C++
application that uses the DBG API. This file will #include
various support files provided in the DBG SDK on the DBG
5.4a CD-ROM. An SDK is provided for each supported
platform.

A Visual Basic module (DBGCAPI.BAS) file is provided for
32-bit versions of Visual Basic 4.0 and higher. This module
declares functions exported from the .DLL, as well as
constants defined in the API. A special version of the BAS
module (DBGCAVB3.BAS) is provided for Visual Basic 3
users.

Note: As of this writing, C/C++ and Visual Basic
support is only available for the Intel 80x86 CPU
architecture.

Function Declarations

Functions are declared as DBGCLIENTFUNC, which is
defined differently depending on the platform. The return
value from all functions is a signed 32-bit long integer.

Table 2. Function Declarations

Platform Library Type Link type

32-bit Windows Windows DLL (via import
library)

long WINAPI

SCO UNIX Static link extern long

Linking

For C and C++ applications, linking with the DBG API on
various platforms requires the definition of certain constants.
You must define the correct constant(s) in your project in
order to link correctly with the API library.

Client API Programming

50 Dialect Database Gateway 5.4a Programmer's Reference Guide

Table 3. Linking By Platform

Platform Library Name Define

32-bit Windows DBGAPI32.LIB
(DBGAPI32.DLL)

_WINDOWS

_WIN32

SCO UNIX dbgcapi.a _UNIX

_SCO

Support for Variable-Length Columns

Due to the limitations of some database systems, data
retrieval for variable-length columns interspersed with fixed
length columns is typically restricted. However, DBG
provides support for variable-length columns, and can be
made to successfully retrieve data from variable-length
columns interspersed with fixed length columns, as long as
you follow certain rules.

With DBG, the key to ensuring the successful retrieval of
variable- and fixed-length column data from any database is
twofold. First, SELECT statements (or others that yield data
from the database) must be carefully constructed to specify
the columns you wish to retrieve, in the order you wish to
retrieve them. Second, DBG requires that names of the
columns that contain variable-length data must appear
AFTER the last column that contains fixed-length data.

For example, say that we have a table named 'people,'
which consists of four columns: 'name,' 'notes,' 'age,' and
'comments.' Furthermore, let us assume that the 'name' and
'age' columns are fixed-length columns, while the 'notes' and
'comments' are variable-length columns. To retrieve all fields
and all records from the table, your SELECT statement
should be as follows:

SELECT name, age, notes, comments FROM
people

Client API Programming

 Dialect Database Gateway 5.4a Programmer's Reference Guide 51

not

SELECT name, notes, age, comments FROM
people

and certainly not

SELECT * from people.

With the SELECT name, age, notes, comments FROM
people statement, the variable-length columns appear at
the end of the column list specification, rather than being
interspersed with fixed-length columns. The construction of
the SELECT statement also ensures that DBG will be able to
retrieve the data after the SELECT statement has executed.

Function Listing

This section lists the individual DBG functions alphabetically,
and provides details for each one.

Table 4. Available Functions

Function Call Description

DBGCCloseWorkarea Closes a workarea in the client API
that is uniquely identified by the
handle in the variable lWAHnd.

DBGCConnect Connects to the DBG Server running
on lpszServerName.

DBGCDisconnect Relinques the connection to the DBG
Server.

DBGCErrorMsg Retrieves the error message
associated with lErrorCode, placing it
in the buffer pointed to by lpszBuffer.

DBGCExecute Passes the SQL statement pointed to
by lpszSQL to the DBG Server for
execution on the database connected
via the pipe lpszPipeName.

Client API Programming

52 Dialect Database Gateway 5.4a Programmer's Reference Guide

Function Call Description

DBGCGetAPIVersion Returns the version of the Database
Gateway API library in use.

DBGCGetColData Retrieves data in the current record
from the column specified by
lpszColName. Up to lSize bytes are
copied into the buffer pointed to by
lpvData.

DBGCGetColName Returns the name of the column
specified by lIndex. The name is
returned as a zero terminated string
into the buffer pointed to by
lpszName.

DBGCGetColSize Returns the number of bytes occupied
by data in the column specified by
lpszColName. The size value is
returned in the long pointed to by
lplSize.

DBGCGetColType Returns the internal DBG data type of
the column specified by lpszColName.
The type value is returned in the long
pointed to by lplType.

DBGCGetODBCCol-
Type

Returns the ODBC data type of the
column specified by lpszColName. The
type value returned in the long
pointed to by lplType.

DBGCGetODBC-
ErrMsg

Returns the current ODBC error
message in the workarea. The zero-
terminated message is placed into the
variable pointed to by lpszBuffer.

Client API Programming

 Dialect Database Gateway 5.4a Programmer's Reference Guide 53

Function Call Description

DBGCGetODBCErr-
MsgLen

Returns the length of the current
ODBC error message in the workarea.
The length is placed into the variable
pointed to by lplSize.

DBGCGetServer-
Version

Returns the version of the Database
Gateway Server.

DBGCInitialize Initializes the DBG API library for non-
Windows platforms.

DBGCLoadComm-
Timeouts

Loads timeout values to be used by
the native TCP/IP transport

DBGCMoveFirst Moves to the first record in the
workarea identified by lWAHnd. This
function must always be called first,
before any move.

DBGCMoveLast Moves to the last record in the
workarea identified by lWAHnd.

DBGCMoveNext Moves to the next record in the
workarea identified by lWAHnd.

DBGCMovePrevious Moves to the previous record in the
workarea identified by lWAHnd.

DBGCOpenWorkarea Opens (creates) a new workarea in
the client API uniquely identified by
the handle returned in the variable
pointed to by lplWAHnd.

DBGCReset Resets the workarea clearing all
records and other data returned from
the server.

DBGCSetComm-
Timeouts

Specifies timeout values to be used by
the native TCP/IP transport.

DBGCShutdown Relinquishes the DBG API library on
non-Windows platforms.

Client API Programming

54 Dialect Database Gateway 5.4a Programmer's Reference Guide

The remainder of this chapter is a detailed listing of all
Dialect Database Gateway API functions.

DBGCCloseWorkarea Client API Programming

 Dialect Database Gateway 5.4a Programmer's Reference Guide 55

DBGCCloseWorkarea
DBGCLIENTFUNC DBGCCloseWorkarea(

LONG lNetConn,
LPLONG lplNetErr,
LONG lWAHnd);

lNetConn Handle specifying the connection to the
Server.

lplNetErr Pointer to a long to hold the error code
reported by the network.

lWAHnd A workarea handle returned on a previous
call to DBGCOpenWorkarea.

Close a workarea in the client API uniquely identified by the
handle in the variable lWAHnd. Once a workarea is closed,
the handle becomes invalid and may not be used to access
workareas again.

Create a new workarea, closing it immediately.

C/C++

LONG lRet;

LONG lNetConn;

LONG lNetErr;

LONG lWA;

lRet = DBGCOpenWorkarea(lNetConn, &lNetErr,
&lWA);

lRet = DBGCCloseWorkarea(lNetConn, &lNetErr,
lWA);

Visual Basic

Dim lRet As Long

Dim lNetConn As Long

Dim lNetErr As Long

Dim lWA As Long

Declaration

Parameters

Remarks

Example

DBGCConnect Client API Programming

56 Dialect Database Gateway 5.4a Programmer's Reference Guide

lRet = DBGCOpenWorkarea(lNetConn, lNetErr,
lWA)

lRet = DBGCCloseWorkarea(lNetConn, lNetErr,
lWA)

DBGCConnect
DBGCLIENTFUNC DBGCConnect(

LPCSTR lpszServerName,
LONG lConnType,
LPCSTR lpszConnParam1,
LPCSTR lpszConnParam2,
LPCSTR lpszConnParam3,
LPLONG lplNetConn,
LPLONG lplNetErr);

lpszServerName The name of the host computer
running the DBG Server.

For TCP/IP, this parameter may be the
DNS name or IP address. For RPC, the
value of this parameter depends on the
protocol in use: IP protocol uses the
DNS name or IP address, while Named
Pipes, Local RPC, IPX, and SPX use the
computer name. Note: IPX and SPX
require a NetWare™ bindery on the
network.

lConnType The type of network connection.
Specify DBGNET_CONN_TCP for
TCP/IP on all platforms,
DBGNET_CONN_RPC on those
platforms supporting RPC.

Declaration

Parameters

Client API Programming DBGCConnect

 Dialect Database Gateway 5.4a Programmer's Reference Guide 57

lpszConnParam1 A string parameter, which has different
meanings, based on the value of
lConnType.

For TCP/IP connections, this is the port
number the Server is listening on (usually
5200). For RPC connections, this is the
name of the RPC protocol sequence to be
used:

• ncacn_np - Named Pipes
• ncacn_ip_tcp - TCP/IP
• ncalrpc - local RPC
• ncadg_ipx - IPX
• ncacn_spx - SPX

lpszConnParam2 Reserved for future use.

lpszConnParam3 Reserved for future use.

lpNetConn Pointer to a long which will hold the
handle to the connection.

lplNetErr Pointer to a long to hold the error code
reported by the network.

Connects to the DBG Server running on lpszServerName.

The lConnType parameter dictates how DBGCConnect
should connect to the Server, while the lpszConnParam1
string that follows specifies the parameters for that (Server)
connection. TCP/IP connections require the port number(s)
on which the Server is listening; RPC connections require the
protocol sequence.

Note: By default, the server listens on port 5200
for TCP/IP connections.

Connect to the DBG Server on corp_srv over TCP/IP;
disconnect immediately.

C/C++

LONG lRet;

LONG lNetConn;

Remarks

Example 1

DBGCConnect Client API Programming

58 Dialect Database Gateway 5.4a Programmer's Reference Guide

LONG lNetErr;

lRet = DBGCConnect("corp_srv",
DBGNET_CONN_TCP, "5200", "", "",
&lNetConn, &lNetErr);

lRet = DBGCDisconnect(lNetConn, &lNetErr);

Visual Basic

Dim lRet As Long

Dim lNetConn As Long

Dim lNetErr As Long

lRet = DBGCConnect("corp_srv",
DBGNET_CONN_TCP, "5200", "", "", lNetConn,
lNetErr)

lRet = DBGCDisconnect(lNetConn, lNetErr)

Connect to the DBG Server on corp_srv over RPC using
Named Pipes as the protocol sequence; disconnect
immediately.

C/C++

LONG lRet;

LONG lNetConn;

LONG lNetErr;

lRet = DBGCConnect("corp_srv",
DBGNET_CONN_RPC, "ncacn_np", "", "",
&lNetConn, &lNetErr);

lRet = DBGCDisconnect(lNetConn, &lNetErr);

Visual Basic

Dim lRet As Long

Dim lNetConn As Long

Dim lNetErr As Long

Example 2

Client API Programming DBGCDisconnect

 Dialect Database Gateway 5.4a Programmer's Reference Guide 59

lRet = DBGCConnect("corp_srv",
DBGNET_CONN_RPC, "ncacn_np", "", "",
lNetConn, lNetErr);

lRet = DBGCDisconnect(lNetConn, lNetErr)

DBGCDisconnect
DBGCLIENTFUNC DBGCDisconnect(

LONG lNetConn,
LPLONG lplNetErr);

lNetConn Handle specifying the connection to the Server.

lplNetErr Pointer to a long to hold the error code report-
ed by the network.

Disconnects from the current Server.

Connect to the DBG Server on corp_srv; disconnect
immediately.

C/C++

LONG lRet;

LONG lNetConn;

LONG lNetErr;

lRet = DBGCConnect("corp_srv",
DBGNET_CONN_TCP, "5200", "", "",
&lNetConn, &lNetErr);

lRet = DBGCDisconnect(lNetConn, &lNetErr);

Visual Basic

Dim lRet As Long

Dim lNetConn As Long

Dim lNetErr As Long

lRet = DBGCConnect("corp_srv",
DBGNET_CONN_TCP, "5200", "", "", lNetConn,
lNetErr)

lRet = DBGCDisconnect(lNetConn, lNetErr)

Declaration

Parameters

Remarks

Example

DBGCErrorMsg Client API Programming

60 Dialect Database Gateway 5.4a Programmer's Reference Guide

DBGCErrorMsg
DBGCLIENTFUNC DBGCErrorMsg(

LONG lErrorCode,
LPSTR lpszBuffer,
LONG lBuffSize);

lErrorCode An error code returned by DBG.

lpszBuffer A pointer to a buffer to hold the error
message.

lBuffSize The size of the buffer pointed to by
lpszBuffer.

Retrieves the error message associated with lErrorCode,
which is always zero-terminated, and places it in the buffer
pointed to by lpszBuffer.

If the buffer is too small to contain the entire error message,
the API will truncate the message to a size of one less than
the value in lBuffSize; the additional byte will be used to
zero-terminate the string.

Determine the error message associated with a DBG error
code.

C/C++

LONG lRet;

LONG lWA;

LONG lSize;

char cBuffer[256];

lRet = ..some DBG operation..

lRet = DBGCGetErrMsg(lRet, cBuffer,
sizeof(cBuffer));

printf("Error message is %s\n", cBuffer);

Visual Basic

Dim lRet As Long

Dim lWA As Long

Dim lSize As Long

Declaration

Parameters

Remarks

Example

Client API Programming DBGCExecute

 Dialect Database Gateway 5.4a Programmer's Reference Guide 61

Dim cBuffer As String * 256

lRet = ..some DBG operation..

lRet = DBGCGetErrMsg(lRet, cBuffer, 256)

Debug.Print "Error message is " & cBuffer

DBGCExecute
DBGCLIENTFUNC DBGCExecute(

LONG lNetConn,
LPLONG lplNetErr,
LONG lWAHnd,
LPCSTR lpszPipeName,
LPCSTR lpszSQL,
DBG_REQ *lpReq);

lNetConn Handle specifying the connection to the
Server.

lplNetErr Pointer to a long to hold the error code
reported by the network.

lWAHnd A workarea handle returned on a previous
call to DBGCOpenWorkarea.

lpszPipeName The name of a valid pipe on the Server.

lpszSQL A valid SQL statement to be passed on to
the database to which the pipe is connected.

lpReq Pointer to a DBG_REQ structure containing
additional information about the execute
request.

Passes the SQL statement pointed to by lpszSQL to the DBG
Server for execution on the database connected via the pipe
lpszPipeName.

Note: To ensure a successful retrieval of
recordsets, place selections for variable-length
columns at the end of each SELECT statement.

Declaration

Parameters

Remarks

DBGCExecute Client API Programming

62 Dialect Database Gateway 5.4a Programmer's Reference Guide

Additional information concerning the request, such as
number of records to retrieve (valid only for statements
yielding records, such as SELECT), and whether the
statement is to be executed in the background, is contained
in the DBG_REQ structure pointed to by lpReq. This
structure is filled in by the API when the function call returns
with information from the Server, including number of
records and columns returned, error codes, and so forth.
(See "Appendix A. Data Structures and Constants" for
structure details.)

Note: The workarea specified by lWAHnd is reset
when this function is called. All data, status codes,
etc., are cleared from the workarea prior to the
function being executed on the server.

Retrieve and display the names and ages of the top three
sales persons in the state of California. This example uses
the database connected to via the corp_sales_pipe pipe
on the Server. The actual database system being used is
irrelevant, provided the SQL statement is valid for that
database.

This is a complete example demonstrating many DBG API
functions. No error checking is included.

Note: The example presents two options for
connecting across the network: native TCP/IP or
RPC (in a Win32 environment only).
The RPC version uses Named Pipes
("ncacn_np") to ensure a secure login to the
Windows NT machine hosting DBG Server.
Regardless of the connection method, subsequent
function calls (including the disconnect logic)
remain the same.

C/C++

LONG lRet;

LONG lNetConn;

LONG lNetErr;

Example

Client API Programming DBGCExecute

 Dialect Database Gateway 5.4a Programmer's Reference Guide 63

LONG lWA;

DBG_REQ tReq;

char cName[32];

long lAge;

/* Connect - use only one of the following */

lRet = DBGCConnect("corp_srv",
DBGNET_CONN_TCP, "5200", "", "",
&lNetConn, &lNetErr);

----OR----

lRet = DBGCConnect("corp_srv",
DBGNET_CONN_RPC, "ncacn_np", "", "",
&lNetConn, &lNetErr);

/* Open a workarea */

lRet = DBGCOpenWorkarea(lNetConn, &lNetErr,
&lWAHnd);

/* Indicate that we're only interested in the
first three records and that the statement
must be executed immediately */

tReq.m_lRecsRequired = 3;

tReq.m_lBackground = 0;

/* Execute the SQL against the database */

lRet = DBGCExecute(lNetConn, &lNetErr,
lWAHnd, "select name, age from
sales_people where state = 'CA' order by
revenue desc", "corp_sales_pipe", &tReq);

/* Display the results */

printf("Top 3 sales people in California\n");

lRet = DBGCMoveFirst(lNetConn, &lNetErr,
lWAHnd);

while(lRet == ERR_DBG_NONE)

{

lRet = DBGCGetColData(lNetConn, &lNetErr,
lWAHnd, "name", cName);

DBGCExecute Client API Programming

64 Dialect Database Gateway 5.4a Programmer's Reference Guide

lRet = DBGCGetColData(lNetConn, &lNetErr,
lWAHnd, "age", &lAge);

printf("%s is %ld years old\n", cName,
lAge);

lRet = DBGCMoveNext(lNetConn, &lNetErr,
lWAHnd);

}

/* Clean up and disconnect */

lRet = DBGCCloseWorkarea(lNetConn, &lNetErr,
lWAHnd);

lRet = DBGCDisconnect(lNetConn, &lNetErr);

Visual Basic

Dim lRet As Long

Dim lNetConn As Long

Dim lNetErr As Long

Dim lWA As Long

Dim tReq As DBG_REQ

Dim cName As String * 32

Dim lAge As Long

' Connect - use only one of the following

lRet = DBGCConnect("corp_srv",
DBGNET_CONN_TCP, "5200", "", "", lNetConn,
lNetErr)

----OR----

lRet = DBGCConnectRpc("corp_srv",
DBGNET_CONN_RPC, "ncacn_np", "", "",
lNetConn, lNetErr)

' Open a workarea

lRet = DBGCOpenWorkarea(lNetConn, lNetErr,
lWAHnd)

' Indicate that we're only interested in the

' first three records and that the statement

Client API Programming DBGCGetAPIVersion

 Dialect Database Gateway 5.4a Programmer's Reference Guide 65

' must be executed immediately

tReq.m_lRecsRequired = 3

tReq.m_lBackground = 0

' Execute the SQL against the database

lRet = DBGCExecute(lNetConn, lNetErr, lWAHnd,
"select name, age from sales_people where
state = 'CA' order by revenue desc",
"corp_sales_pipe", tReq)

' Display the results

Debug.Print "Top 3 sales people in
California"

lRet = DBGCMoveFirst(lNetConn, lNetErr,
lWAHnd)

Do While lRet = ERR_DBG_NONE

lRet = DBGCGetColData(lNetConn, lNetErr,
lWAHnd, "name", cName)

lRet = DBGCGetColData(lNetConn, lNetErr,
lWAHnd, "age", lAge)

Debug.Print cName & " is " & lAge & " years
old"

lRet = DBGCMoveNext(lNetConn, lNetErr
lWAHnd)

Loop

' Clean up and disconnect

lRet = DBGCCloseWorkarea(lNetConn, lNetErr,
lWAHnd)

lRet = DBGCDisconnect(lNetConn, lNetErr)

DBGCGetAPIVersion
DBGCLIENTFUNC DBGCGetAPIVersion(LPSTR lpszBuff);

lpszBuff Pointer to a buffer to hold the returned (zero
terminated) API version string.

Declaration

Parameters

DBGCGetAPIVersion Client API Programming

66 Dialect Database Gateway 5.4a Programmer's Reference Guide

Returns the version of the Database Gateway API in use as
an ANSI, zero terminated string.

Note: Although the API version string is currently
less than 32 bytes, it is recommended that the
buffer not be smaller than 32 bytes, including the
zero-terminator, to allow for future version strings
that may be larger.

The returned string uses the following format: a.b.c.d,
where:

String
Position Represents Description

a major
version
number

Increments each time significant
enhancements and features are added
to the software.

b minor
version
number

Changes when an existing feature is
modified or a small feature or
enhancement is added, and only when
these changes do not affect the
existing operations of the software. In
addition, this value is reset to zero
when the major version number
changes.

c release
stage

Indicates where in the release process
the software currently is, and uses the
ending digit of the release code to
signify the actual release stage. In
addition, this value is reset when the
minor version number changes.

For example, 5, 15, 25, 205 all mean
the same; the digits prior to the
release code are internal tracking
numbers used to indicate iterations
through the release cycle, shown
below:

0 Software is under development,

Remarks

Client API Programming DBGCGetAPIVersion

 Dialect Database Gateway 5.4a Programmer's Reference Guide 67

String
Position Represents Description

e.g. 0, 10, 20.

1 Software has passed primary
developer testing, e.g. 1, 11, 21.

2 Software has passed secondary
developer testing, e.g. 2, 12, 22.

3 Software has passed primary
quality assurance, e.g. 3, 13, 23.

4 Software has passed secondary
quality assurance, e.g. 4, 14, 24.

5 Software has passed field trials, is
available for distribution, and will
include technical support, e.g. 5,
15, 25. Any modifications to the
software at this point require (at
minimum) a change in the minor
version number. Only one version
of the software for a particular
major and minor version will ever
reach stage 5.

6 - 9Not currently used

d build
number

Increments for each software build,
which is released for primary
developer testing. This value is never
reset

The following table provides examples of software version
numbers and describes how to interpret them:

Version Explanation

2.4.0.15 The software is at release 2.4 and is currently under
development.

2.4.1.16 The software is at release 2.4 and has passed
primary developer testing.

DBGCGetAPIVersion Client API Programming

68 Dialect Database Gateway 5.4a Programmer's Reference Guide

Version Explanation

2.4.30.27 The software is at release 2.4 and is under
development. The software is in its third iteration
through the release cycle.

2.4.31.42 The software is at release 2.4 and has passed
primary developer testing. The software is in its
third iteration through the release cycle.

2.4.34.51 The software is at release 2.4 and has passed
secondary QA. The software is now ready for field
trials. Support is limited to issues related to field
trials.

2.4.35.51 The software is at release 2.4 and is ready for
distribution. Official support is now available for the
product.

Display the version number of the API library.

C/C++

LONG lRet;

char cBuff[32];

lRet = DBGCGetAPIVersion(cBuff);

printf("API version is: %s\n", cBuff);

Visual Basic

Dim lRet As Long

Dim cBuff As String

cBuff = String(32, 0)

lRet = DBGCGetAPIVersion(cBuff)

cBuff = Left(cBuff, InStr(cBuff, Chr(0))-1)

Debug.Print "API version is: " & cBuff

Example

Client API Programming DBGCGetColData

 Dialect Database Gateway 5.4a Programmer's Reference Guide 69

DBGCGetColData
DBGCLIENTFUNC DBGCGetColData(

LONG lNetConn,
LPLONG lplNetErr,
LONG lWAHnd,
LPCSTR lpszColName,
LPVOID lpvBuffer,
LONG lSize);

lNetConn Handle specifying the connection to the
Server.

lplNetErr Pointer to a long to hold the error code
reported by the network.

lWAHnd A workarea handle returned on a previous
call to DBGCOpenWorkarea.

lpszColName The name of the column.

lpvData A pointer to a buffer to copy the data into.
The buffer must be at least lSize bytes in
length.

lSize The number of bytes to copy into the
buffer.

Retrieves data in the current record from the column
specified by lpszColName. Up to lSize bytes are copied into
the buffer pointed to by lpvData.

If lSize is larger than the size of the column, the size of the
column dictates how much data will be copied into the
buffer.

A binary transfer of the data is made from the workarea to
the buffer. No translation is performed on the data as it is
copied.

Note: Before calling this function, buffers should
be initialized to binary zero to allow for auto-
matically zero-terminating character data and
initializing numeric data.

Declaration

Parameters

Remarks

DBGCGetColName Client API Programming

70 Dialect Database Gateway 5.4a Programmer's Reference Guide

Retrieve the "zipcode" column from workarea's current
record.

C/C++

LONG lRet;

LONG lNetConn;

LONG lNetErr;

LONG lWA;

char cData[32];

memset(cData, 0, sizeof(cData));

lRet = DBGCGetColData(lNetConn, &lNetErr,
lWA, "zipcode", cData, sizeof(cData));

printf("Zip code is %s.\n", cData);

Visual Basic

Dim lRet As Long

Dim lNetConn As Long

Dim lNetErr As Long

Dim lWA As Long

Dim cData As String

cData = String(32, 0)

lRet = DBGCGetColData(lNetConn, lNetErr, lWA,
"zipcode", cData, 32)

Debug.Print "Zip code is " & cData

DBGCGetColName
DBGCLIENTFUNC DBGCGetColName(

LONG lNetConn,
LPLONG lplNetErr,
LONG lWAHnd,
LONG lIndex,
LPSTR lpszName);

Example

Declaration

Client API Programming DBGCGetColName

 Dialect Database Gateway 5.4a Programmer's Reference Guide 71

lNetConn Handle specifying the connection to the
Server.

lplNetErr Pointer to a long to hold the error code
reported by the network.

lWAHnd A workarea handle returned on a previous
call to DBGCOpenWorkarea.

lIndex The zero-based index of the column name
to retrieve.

lpszName A pointer to a buffer large enough to hold
the name of the column.

Returns the name of the column specified by lIndex. The
name is returned as a zero-terminated string into the buffer
pointed to by lpszName; the named buffer must be large
enough to hold the name of the column.

Note: Column numbers begin at 0.

Retrieve the name of the third column (column 2) in the
workarea's recordset.

C/C++

LONG lRet;

LONG lNetConn;

LONG lNetErr;

LONG lWA;

char cColName[256];

lRet = DBGCGetColName(lNetConn, &lNetErr,
lWA, 2, cColName);

Visual Basic

Dim lRet As Long

Dim lNetConn As Long

Dim lNetErr As Long

Dim lWA As Long

Dim cColName As String * 256

Parameters

Remarks

Example

DBGCGetColSize Client API Programming

72 Dialect Database Gateway 5.4a Programmer's Reference Guide

lRet = DBGCGetColName(lNetConn, &lNetErr,
lWA, 2, cColName)

DBGCGetColSize
DBGCLIENTFUNC DBGCGetColSize(

LONG lNetConn,
LPLONG lplNetErr,
LONG lWAHnd,
LPCSTR lpszColName,
LPLONG lplSize);

lNetConn Handle specifying the connection to the
Server.

lplNetErr Pointer to a long to hold the error code
reported by the network.

lWAHnd A workarea handle returned on a previous
call to DBGCOpenWorkarea.

lpszColName The name of the column.

lplSize A pointer to a long that will hold the size of
the column's data.

Returns the number of bytes occupied by data in the column
specified by lpszColName. The size value is returned in the
long pointed to by lplSize.

Retrieve the size of the "zipcode" column in the workarea's
recordset.

C/C++

LONG lRet;

LONG lNetConn;

LONG lNetErr;

LONG lWA;

LONG lColSize;

Declaration

Parameters

Remarks

Example

Client API Programming DBGCGetColType

 Dialect Database Gateway 5.4a Programmer's Reference Guide 73

lRet = DBGCGetColSize(lNetConn, &lNetErr,
lWA, "zipcode", &lColSize);

Visual Basic

Dim lRet As Long

Dim lNetConn As Long

Dim lNetErr As Long

Dim lWA As Long

Dim lColSize As Long

lRet = DBGCGetColSize(lNetConn, lNetErr, lWA,
"zipcode", lColSize)

DBGCGetColType
DBGCLIENTFUNC DBGCGetColType(

LONG lNetConn,
LPLONG lplNetErr,
LONG lWAHnd,
LPCSTR lpszColName,
LPLONG lplType);

lNetConn Handle specifying the connection to the
Server.

lplNetErr Pointer to a long to hold the error code
reported by the network.

lWAHnd A workarea handle returned on a previous
call to DBGCOpenWorkarea.

lpszColName The name of the column.

lplType A pointer to a long that will hold the DBG
data type of the column.

Returns the internal DBG data type of the column specified
by lpszColName. The type value is returned in the long
pointed to by lplType.

Declaration

Parameters

Remarks

DBGCGetColType Client API Programming

74 Dialect Database Gateway 5.4a Programmer's Reference Guide

(See "Data Types" on page 100 for a complete list of data
types processed by DBG.)

Note: The DBG Server translates ODBC data type
values to internal values. Use the DBGCGet-
ODBCColType function to determine the ODBC
data type returned by the database's ODBC driver.

Retrieve the DBG data type of the "zipcode" column in the
workarea's recordset.

C/C++

LONG lRet;

LONG lNetConn;

LONG lNetErr;

LONG lWA;

LONG lColType;

lRet = DBGCGetColType(lNetConn, &lNetErr,
lWA, "zipcode", &lColType);

Visual Basic

Dim lRet As Long

Dim lNetConn As Long

Dim lNetErr As Long

Dim lWA As Long

Dim lColType As Long

lRet = DBGCGetColType(lNetConn, lNetErr, lWA,
"zipcode", lColType)

Example

Client API Programming DBGCGetODBCColType

 Dialect Database Gateway 5.4a Programmer's Reference Guide 75

DBGCGetODBCColType
DBGCLIENTFUNC DBGCGetODBCColType(

LONG lNetConn,
LPLONG lplNetErr,
LONG lWAHnd,
LPCSTR lpszColName,
LPLONG lplType);

lNetConn Handle specifying the connection to the
Server.

lplNetErr Pointer to a long to hold the error code
reported by the network.

lWAHnd A workarea handle returned on a previous
call to DBGCOpenWorkarea.

lpszColName The name of the column.

lplType A pointer to a long that will hold the ODBC
data type of the column.

Returns the ODBC data type of the column specified by
lpszColName. The type value returned in the long pointed to
by lplType.

(See "Data Types" on page 100 for a complete list of data
types processed by DBG.)

Retrieve the ODBC data type of the "zipcode" column in
the workarea's recordset.

C/C++

LONG lRet;

LONG lNetConn;

LONG lNetErr;

LONG lWA;

LONG lColType;

lRet = DBGCGetODBCColType(lNetConn, &lNetErr,
lWA, "zipcode", lColType);

Declaration

Parameters

Remarks

Example

DBGCGetODBCErrMsg Client API Programming

76 Dialect Database Gateway 5.4a Programmer's Reference Guide

Visual Basic

Dim lRet As Long

Dim lNetConn As Long

Dim lNetErr As Long

Dim lWA As Long

Dim lColType As Long

lRet = DBGCGetODBCColType(lNetConn, lNetErr,
lWA, "zipcode", lColType)

DBGCGetODBCErrMsg
DBGCLIENTFUNC DBGCGetODBCErrMsg(

LONG lNetConn,
LPLONG lplNetErr,
LONG lWAHnd,
LPSTR lpszBuffer);

lNetConn Handle specifying the connection to the
Server.

lplNetErr Pointer to a long to hold the error code
reported by the network.

lWAHnd A workarea handle returned on a previous
call to DBGCOpenWorkarea.

lpszBuffer A pointer to a buffer to hold the ODBC error
message. The buffer must be large enough
to contain the entire error message
including the zero terminator.

Returns the current ODBC error message in the workarea.
The zero-terminated message is placed into the variable
pointed to by lpszBuffer.

Note: The buffer must be large enough to contain
the entire error message including the zero termi-
nator.

Declaration

Parameters

Remarks

Client API Programming DBGCGetODBCErrMsg

 Dialect Database Gateway 5.4a Programmer's Reference Guide 77

Determine the length of the current ODBC error message,
size a buffer accordingly, retrieve the message and display
it.

C/C++

LONG lRet;

LONG lNetConn;

LONG lNetErr;

LONG lWA;

LONG lSize;

char *lpszBuffer;

lRet = DBGCGetODBCErrMsgLen(lNetConn,
&lNetErr, lWA, &lSize);

lpszBuffer = malloc(lSize);

memset(lpszBuffer, 0, lSize);

lRet = DBGCGetODBCErrMsg(lNetConn, &lNetErr,
lWA, lpszBuffer);

printf("Error message is %s\n", lpszBuffer);

free(lpszBuffer);

Visual Basic

Dim lRet As Long

Dim lNetConn As Long

Dim lNetErr As Long

Dim lWA As Long

Dim lSize As Long

Dim cBuffer As String

lRet = DBGCGetODBCErrMsgLen(lNetConn,
lNetErr, lWA, lSize)

cBuffer = String(lSize, 0)

lRet = DBGCGetODBCErrMsg(lNetConn, lNetErr,
lWA, cBuffer)

Debug.Print "Error message is " & cBuffer

Example

DBGCGetODBCErrMsgLen Client API Programming

78 Dialect Database Gateway 5.4a Programmer's Reference Guide

DBGCGetODBCErrMsgLen
DBGCLIENTFUNC DBGCGetODBCErrMsgLen(

LONG lNetConn,
LPLONG lplNetErr,
LONG lWAHnd,
LPLONG lSize);

lNetConn Handle specifying the connection to the
Server.

lplNetErr Pointer to a long to hold the error code
reported by the network.

lWAHnd A workarea handle returned on a previous
call to DBGCOpenWorkarea.

lplSize A pointer to a long integer to receive the
length of the ODBC error message
(including zero terminator).

Returns the length of the current ODBC error message in the
workarea. The length is placed into the variable pointed to
by lplSize. The length returned by the API includes the zero
terminating byte.

Retrieve the length of the current ODBC error message.

C/C++

LONG lRet;

LONG lNetConn;

LONG lNetErr;

LONG lWA;

LONG lSize;

lRet = DBGCGetODBCErrMsgLen(lNetConn,
&lNetErr, lWA, &lSize);

Visual Basic

Dim lRet As Long

Dim lNetConn As Long

Dim lNetErr As Long

Declaration

Parameters

Remarks

Example

Client API Programming DBGCGetServerVersion

 Dialect Database Gateway 5.4a Programmer's Reference Guide 79

Dim lWA As Long

Dim lSize As Long

lRet = DBGCGetODBCErrMsgLen(lNetConn,
lNetErr, lWA, lSize)

DBGCGetServerVersion
DBGCLIENTFUNC DBGCGetServerVersion(

LONG lNetConn,
LPLONG lplNetErr,
LPSTR lpszBuff);

lNetConn Handle specifying the connection to the
Server.

lplNetErr Pointer to a long to hold the error code
reported by the network.

lpszBuff Pointer to a buffer to hold the returned (zero
terminated) Server version string.

Returns the version of the Database Gateway Server as an
ANSI, zero terminated string.

Note: Although the server version string is
currently less than 32 bytes, it is recommended
that the buffer not be smaller than 32 bytes,
including the zero-terminator, to allow for future
version strings that may be larger.

The returned string uses the following format: a.b.c.d,
where:

String
Position Represents Description

a major
version
number

Increments each time significant
enhancements and features are added
to the software.

b minor
version

Changes when an existing feature is
modified or a small feature or

Declaration

Parameters

Remarks

DBGCGetServerVersion Client API Programming

80 Dialect Database Gateway 5.4a Programmer's Reference Guide

String
Position Represents Description

number enhancement is added, and only when
these changes do not affect the
existing operations of the software. In
addition, this value is reset to zero
when the major version number
changes.

c release
stage

Indicates where in the release process
the software currently is, and uses the
ending digit of the release code to
signify the actual release stage. In
addition, this value is reset when the
minor version number changes.

For example, 5, 15, 25, 205 all mean
the same; the digits prior to the
release code are internal tracking
numbers used to indicate iterations
through the release cycle, shown
below:

0 Software is under development,
e.g. 0, 10, 20.

1 Software has passed primary
developer testing, e.g. 1, 11, 21.

2 Software has passed secondary
developer testing, e.g. 2, 12, 22.

3 Software has passed primary
quality assurance, e.g. 3, 13, 23.

4 Software has passed secondary
quality assurance, e.g. 4, 14, 24.

5 Software has passed field trials,
is available for distribution, and
will include technical support,
e.g. 5, 15, 25. Any modifications
to the software at this point

Client API Programming DBGCGetServerVersion

 Dialect Database Gateway 5.4a Programmer's Reference Guide 81

String
Position Represents Description

require (at minimum) a change
in the minor version number.
Only one version of the software
for a particular major and minor
version will ever reach stage 5.

6 – 9 Not currently used

d build
number

Increments for each software build,
which is released for primary
developer testing. This value is never
reset.

The following table provides examples of software version
numbers and describes how to interpret them:

Version Explanation

2.4.0.15 The software is at release 2.4 and is currently under
development.

2.4.1.16 The software is at release 2.4 and has passed
primary developer testing.

2.4.30.27 The software is at release 2.4 and is under
development. The software is in its third iteration
through the release cycle.

2.4.31.42 The software is at release 2.4 and has passed
primary developer testing. The software is in its
third iteration through the release cycle.

2.4.34.51 The software is at release 2.4 and has passed
secondary QA. The software is now ready for field
trials. Support is limited to issues related to field
trials.

2.4.35.51 The software is at release 2.4 and is ready for
distribution. Official support is now available for the
product.

DBGCInitialize Client API Programming

82 Dialect Database Gateway 5.4a Programmer's Reference Guide

Display the version number of the Database Gateway Server.

C/C++

LONG lRet;

LONG lNetConn;

LONG lNetErr;

char cBuff[32];

lRet = DBGCGetServerVersion(lNetConn,
&lNetErr, cBuff);

printf("Server version is: %s\n", cBuff);

Visual Basic

Dim lRet As Long

Dim lNetConn As Long

Dim lNetErr As Long

Dim cBuff As String

cBuff = String(32, 0)

lRet = DBGCGetServerVersion(lNetConn,
lNetErr, cBuff)

cBuff = Left(cBuff, InStr(cBuff, Chr(0))-1)

Debug.Print "Server version is: " & cBuff

DBGCInitialize
DBGCLIENTFUNC DBGCInitialize()

None

Initializes the DBG API library for non-Windows platforms.

This function must be called once, at the beginning of your
application, and before calling any other DBG API functions
on non-Windows platforms. There should be a
corresponding call to DBGCShutdown at the end of your
program.

Example

Declaration

Parameters

Remarks

Client API Programming DBGCLoadCommTimeouts

 Dialect Database Gateway 5.4a Programmer's Reference Guide 83

Caution: Invoking this function in a Windows
environment may cause unexpected results. The
Windows implementation of the client API
automatically initializes and destroys internal data
structures when loading and unloading.

Initialize the API library in a non-Windows application.

C/C++

LONG lRet;

lRet = DBGCInitialize();

Visual Basic

N/A – non-Windows environments only.

DBGCLoadCommTimeouts
DBGCLIENTFUNC DBGCLoadCommTimeouts(

 LPCSTR lpszFileName);

lpszFileName Name of the file containing TCP/IP commu-
nications timeout parameters.

Loads timeout values which are to be used by the base
TCP/IP transport. Values are loaded from the file name
specified by lpszFileName. The file itself is an ANSI text file
with a value on each line. Each value specifies a different
timeout parameter (see Table 5 that follows) and must be
followed by the new line sequence for the particular
operating system.

Values are divided into send and receive operational
timeouts specified in seconds. When using the TCP/IP base
transport, a typical API function call consists of a send
operation, followed by a receive operation. The send
operation sends instructions over the network to the DBG
Server, while the receive operation waits on a response, also
from the Server. If the send or receive operation times out,
the function is aborted and an error is returned to the calling

Example

Declaration

Parameters

Remarks

DBGCLoadCommTimeouts Client API Programming

84 Dialect Database Gateway 5.4a Programmer's Reference Guide

application. RPC connectivity is not affected by these
timeouts

DBGCLoadCommTimeouts can be called at any time
during the execution of a program, but it is recommend that
it be called once, at the beginning of the program (after
DBGCInitialize, if applicable).

Table 5. Timeout Values

Timeout Description

SendWaitMax Maximum time in seconds that the network
send routines wait for the socket to become
available for writing.

SendOpMax Maximum time in seconds that the network
send routines may take to execute an entire
send operation.

ReceiveWaitMa
x

Maximum time in seconds that the network
receive routines wait for the socket to
become available for reading.

ReceiveOpMax Maximum time in seconds that the network
receive routines may take to execute an
entire receive operation.

Note: Timeout values are global to the API.
A value less than one second will use the default
values built into the API. These values are five
seconds for waits and 30 seconds for operations.

The following text file, TIMEOUT.DBG, created using a
standard text editor, contains timeout values. Each line is
followed by a newline character, including the last line.

Send operations will wait for up to 5 seconds for the socket
to become available, and send operations may not exceed
10 seconds. Receive operations will wait up to 6 seconds for
the socket to become available and will timeout after 25
seconds.

RPC functions are not
affected by these timeout
values.

Example

Client API Programming DBGCMoveFirst

 Dialect Database Gateway 5.4a Programmer's Reference Guide 85

5
10
6
25

Following are source code examples to illustrate loading this
file from the current directory in a Windows environment.
Note that other operating systems may have different rules
for naming files and directories.

C/C++

LONG lRet;

lRet = DBGCLoadTimeouts(".\\TIMEOUT.DBG");

Visual Basic

Dim lRet As Long

lRet = DBGCLoadTimeouts(".\TIMEOUT.DBG");

DBGCMoveFirst
DBGCLIENTFUNC DBGCMoveFirst(

LONG lNetConn,
LPLONG lplNetErr,
LONG lWAHnd);

lNetConn Handle specifying the connection to the
Server.

lplNetErr Pointer to a long to hold the error code
reported by the network.

lWAHnd A workarea handle returned on a previous
call to DBGCOpenWorkarea.

Moves to the first record in the workarea identified by
lWAHnd, and must always be called first, before any move.

An error is returned if no records exist in the workarea's
recordset.

Declaration

Parameters

Remarks

DBGCMoveLast Client API Programming

86 Dialect Database Gateway 5.4a Programmer's Reference Guide

Note: This function must be preceded by a
successful database query yielding one or more
records.

Move to the first record in the workarea.

C/C++

LONG lRet;

LONG lNetConn;

LONG lNetErr;

LONG lWA;

lRet = DBGCMoveFirst(lNetConn, &lNetErr,
lWA);

Visual Basic

Dim lRet As Long

Dim lNetConn As Long

Dim lNetErr As Long

Dim lWA As Long

lRet = DBGCMoveFirst(lNetConn, lNetErr, lWA)

DBGCMoveLast
DBGCLIENTFUNC DBGCMoveLast(

LONG lNetConn,
LPLONG lplNetErr,
LONG lWAHnd);

lNetConn Handle specifying the connection to the
Server.

lplNetErr Pointer to a long to hold the error code
reported by the network.

lWAHnd A workarea handle returned on a previous
call to DBGCOpenWorkarea.

Example

Declaration

Parameters

Client API Programming DBGCMoveNext

 Dialect Database Gateway 5.4a Programmer's Reference Guide 87

Moves to the last record in the workarea identified by
lWAHnd.

An error is returned if no records exist in the workarea's
recordset.

Note: This function must be preceded by a
successful database query yielding one or more
records.

Move to the last record in the workarea.

C/C++

LONG lRet;

LONG lNetConn;

LONG lNetErr;

LONG lWA;

lRet = DBGCMoveLast(lNetConn, &lNetErr, lWA);

Visual Basic

Dim lRet As Long

Dim lNetConn As Long

Dim lNetErr As Long

Dim lWA As Long

lRet = DBGCMoveLast(lNetConn, lNetErr, lWA)

DBGCMoveNext
DBGCLIENTFUNC DBGCMoveNext(

LONG lNetConn,
LPLONG lplNetErr,
LONG lWAHnd);

lNetConn Handle specifying the connection to the
Server.

lplNetErr Pointer to a long to hold the error code

Remarks

Example

Declaration

Parameters

DBGCMoveNext Client API Programming

88 Dialect Database Gateway 5.4a Programmer's Reference Guide

reported by the network.

lWAHnd A workarea handle returned on a previous
call to DBGCOpenWorkarea.

Moves to the next record in the workarea identified by
lWAHnd.

If an attempt to move beyond the end of the workarea's
recordset is made, an error message is returned. Also, the
last record in the recordset (if any) becomes the current
record.

Note: This function must be preceded by a
successful database query yielding one or more
records.

Move to the next record in the workarea.

C/C++

LONG lRet;

LONG lNetConn;

LONG lNetErr;

LONG lWA;

lRet = DBGCMoveNext(lNetConn, &lNetErr, lWA);

Visual Basic

Dim lRet As Long

Dim lNetConn As Long

Dim lNetErr As Long

Dim lWA As Long

lRet = DBGCMoveNext(lNetConn, lNetErr, lWA)

Remarks

Example

Client API Programming DBGCMovePrevious

 Dialect Database Gateway 5.4a Programmer's Reference Guide 89

DBGCMovePrevious
DBGCLIENTFUNC DBGCMovePrevious(

LONG lNetConn,
LPLONG lplNetErr,
LONG lWAHnd);

lNetConn Handle specifying the connection to the
Server.

lplNetErr Pointer to a long to hold the error code
reported by the network.

lWAHnd A workarea handle returned on a previous
call to DBGCOpenWorkarea.

Moves to the previous record in the workarea identified by
lWAHnd.

If an attempt to move beyond the end of the workarea's
recordset is made, an error message is returned. Also, the
last record in the recordset (if any) becomes the current
record.

Note: This function must be preceded by a
successful database query yielding one or more
records.

Move to the previous record in the workarea.

C/C++

LONG lRet;

LONG lNetConn;

LONG lNetErr;

LONG lWA;

lRet = DBGCMovePrevious(lNetConn, &lNetErr,
lWA);

Visual Basic

Dim lRet As Long

Dim lNetConn As Long

Declaration

Parameters

Remarks

Example

DBGCOpenWorkarea Client API Programming

90 Dialect Database Gateway 5.4a Programmer's Reference Guide

Dim lNetErr As Long

Dim lWA As Long

lRet = DBGCMovePrevious(lNetConn, lNetErr,
lWA)

DBGCOpenWorkarea
DBGCLIENTFUNC DBGCOpenWorkarea(

LONG lNetConn,
LPLONG lplNetErr,
LPLONG lplWAHnd);

lNetConn Handle specifying the connection to the
Server.

lplNetErr Pointer to a long to hold the error code
reported by the network.

lplWAHnd Pointer to a long integer to receive the
handle of the newly opened workarea.

Opens (creates) a new workarea in the client API uniquely
identified by the handle returned in the variable pointed to
by lplWAHnd. This workarea is used on subsequent calls to
the API to submit SQL statements to the pipe on the Server
and to manipulate data retrieved from the database.

Note: Although not required with version 5.0, it is
recommend that a connection is established with
the server before opening a workarea. Likewise, it
is recommended that the workarea is closed
before the connection with the server is
terminated.

Create a new workarea, closing it immediately.

C/C++

LONG lRet;

LONG lNetConn;

LONG lNetErr;

Declaration

Parameters

Remarks

Example

Client API Programming DBGCReset

 Dialect Database Gateway 5.4a Programmer's Reference Guide 91

LONG lWA;

lRet = DBGCOpenWorkarea(lNetConn, &lNetErr,
&lWA);

lRet = DBGCCloseWorkarea(lNetConn, &lNetErr,
lWA);

Visual Basic

Dim lRet As Long

Dim lNetConn As Long

Dim lNetErr As Long

Dim lWA As Long

lRet = DBGCOpenWorkarea(lNetConn, lNetErr,
lWA)

lRet = DBGCCloseWorkarea(lNetConn, &lNetErr,
lWA)

DBGCReset
DBGCLIENTFUNC DBGCReset(

LONG lNetConn,
LPLONG lplNetErr,
LONG lWAHnd);

lNetConn Handle specifying the connection to the
Server.

lplNetErr Pointer to a long to hold the error code
reported by the network.

lWAHnd A workarea handle returned on a previous
call to DBGCOpenWorkarea.

Resets the workarea clearing all records and other data
returned from the Server.

Note: Calling this function results in losing all data
in the recordset.

Declaration

Parameters

Remarks

DBGCSetCommTimeouts Client API Programming

92 Dialect Database Gateway 5.4a Programmer's Reference Guide

Clear the workarea.

C/C++

LONG lRet;

LONG lNetConn;

LONG lNetErr;

LONG lWA;

lRet = DBGCReset(lNetConn, &lNetErr, lWA);

Visual Basic

Dim lRet As Long

Dim lNetConn As Long

Dim lNetErr As Long

Dim lWA As Long

lRet = DBGCReset(lNetConn, lNetErr, lWA)

DBGCSetCommTimeouts
DBGCLIENTFUNC DBGCSetCommTimeouts(

LONG lSendWaitMax,
LONG lSendOpMax,
LONG lRecvWaitMax,
LONG lRecOpMax);

lSendWaitMax Maximum time in seconds that the network
send routines wait for the socket to become
available for writing

lSendOpMax Maximum time in seconds that the network
send routines may take to execute an entire
send operation.

lRecWaitMax Maximum time in seconds that the network
receive routines wait for the socket to
become available for reading

lRecvOpMax Maximum time in seconds that the network

Example

Declaration

Parameters

Client API Programming DBGCSetCommTimeouts

 Dialect Database Gateway 5.4a Programmer's Reference Guide 93

receive routines may take to execute an
entire receive operation.

Specifies the timeout values that are to be used by the
native TCP/IP transport.

Values are divided into send and receive operational
timeouts specified in seconds. When using the TCP/IP base
transport, a typical API function call consists of a send
operation, followed by a receive operation. The send
operation sends instructions over the network to the DBG
Server, while the receive operation waits on a response, also
from the Server. If a send or receive operation times out,
the function is aborted and an error is returned to the calling
application. RPC connectivity is not affected by these
timeouts

DBGCSetCommTimeouts can be called at any time during
the execution of a program, but it is recommend that it be
called once, at the beginning of the program (after
DBGCInitialize, if applicable).

Note: Timeout values are global to the API.
A value less than one second will use the default
values built into the API. These values are five
seconds for waits and 30 seconds for operations.

Specify timeouts for the TCP/IP transport. Send operations
will wait for up to 5 seconds for the socket to become
available, and send operations may not exceed 10 seconds.
Receive operations will wait up to 6 seconds for the socket
to become available and will timeout after 25 seconds.

C/C++

LONG lRet;

lRet = DBGCSetCommTimeouts(5, 10, 6, 25);

Visual Basic

Dim lRet As Long

Remarks

Example

DBGCShutdown Client API Programming

94 Dialect Database Gateway 5.4a Programmer's Reference Guide

lRet = DBGCSetCommTimeouts(5, 10, 6, 25)

DBGCShutdown
DBGCLIENTFUNC DBGCShutdown()

None

Relinquishes the DBG API library on non-Windows platforms.

This function must be called once, before exiting your
application, to unload the DBG API library.

Caution: Invoking this function in a Windows
environment may cause unexpected results. The
Windows implementation of the client API
automatically initializes and destroys internal data
structures when loading and unloading
respectively.

Shutdown the API library in a non-Windows application.

C/C++

LONG lRet;

lRet = DBGCShutdown();

Visual Basic

N/A – non-Windows environments only.

Declaration

Parameters

Remarks

Example

 Dialect Database Gateway 5.4a Programmer's Reference Guide 95

Appendix A. Data Structures and
Constants

This appendix lists data structures and constants specific to
Dialect Database Gateway.

Data Structures

DBG uses the following data structures to fill in date and
time information returned by the database, or communicate
additional execute request information:

• DBG_DATE

• DBG_REQ

• DBG_TIME

• DBG_TIMESTAMP
The next few pages provide details for each of these types
of data structures.

DBG_DATE
A structure filled in by the DBG Server for date fields
returned by the database.

C/C++

typedef struct _tagDBG_DATE

{
signed short m_sYear;
unsigned short m_usMonth;

Remarks

Appendix A. Data Structures and Constants

96 Dialect Database Gateway 5.4a Programmer's Reference Guide

unsigned short m_usDay;
} DBG_DATE, FAR *LPDBG_DATE;

Visual Basic

Type DBG_DATE
m_sYear As Integer
m_usMonth As Integer
m_usDay As Integer

End Type

DBG_REQ
A structure used to communicate additional execute request
information to DBGCExecute. Certain fields are filled in by
the function call when it returns.

C/C++

typedef struct _tagDBG_REQ

{
/* Filled in by caller */
LONG m_lRecsRequired;
LONG m_lBackground;

/* Fill in by function */
LONG m_lODBCErrorCode;
char m_cODBCStatus[6];
LONG m_lNativeErrorCode;
LONG m_lRecsReturned;
LONG m_lColsReturned;

} DBG_REQ, FAR *LPDBG_REQ;

Visual Basic

Type DBG_REQ

' Filled in by caller
m_lRecsRequired As Long
m_lBackground As Long

Remarks

Appendix A. Data Structures and Constants

 Dialect Database Gateway 5.4a Programmer's Reference Guide 97

' Fill in by function
m_lODBCErrorCode As Long
m_cODBCStatus As String * 6
m_lNativeErrorCode As Long
m_lRecsReturned As Long
m_lColsReturned As Long

End Type

DBG_TIME
A structure filled in by the DBG Server for time fields
returned by the database.

C/C++

typedef struct _tagDBG_TIME

{
unsigned short m_usHour;
unsigned short m_usMinute;
unsigned short m_usSecond;

} DBG_TIME, FAR *LPDBG_TIME;

Visual Basic

Type DBG_TIME
m_usHour As Integer
m_usMinute As Integer
m_usSecond As Integer

End Type

DBG_TIMESTAMP
A structure filled in by the DBG Server for timestamp fields
returned by the database.

C/C++

typedef struct _tagDBG_TIMESTAMP

{
signed short m_sYear;

Remarks

Remarks

Appendix A. Data Structures and Constants

98 Dialect Database Gateway 5.4a Programmer's Reference Guide

unsigned short m_usMonth;
unsigned short m_usDay;
unsigned short m_usHour;
unsigned short m_usMinute;
unsigned short m_usSecond;

} DBG_TIMESTAMP, FAR *LPDBG_TIMESTAMP;

Visual Basic

Type DBG_TIMESTAMP
m_sYear As Integer
m_usMonth As Integer
m_usDay As Integer
m_usHour As Integer
m_usMinute As Integer
m_usSecond As Integer

End Type

Constants

DBG uses the following constants to define data names and
sizes, specify default timeout values and network settings for
TCP/IP functions, and define data types:

• Sizes

• Timeout values

• Miscellaneous network settings

• Data types.

The next few pages provide details for each of these types
of constants.

Sizes

Table 6 that follows lists constants that define the maximum
sizes for names and data.

Appendix A. Data Structures and Constants

 Dialect Database Gateway 5.4a Programmer's Reference Guide 99

Table 6. Constants and Data Sizes

Constant Value Description

DBGMAX_COLNAME_SIZ
E

33 Maximum size of a column
name, including zero
terminator.

DBGMAX_PIPENAME_SIZ
E

33 Maximum size of a pipe
name, including zero
terminator.

Network Timeouts

Table 7 that follows lists constants that define default
timeout values for TCP/IP function operations. These
timeouts may be changed using the
DBGCSetCommTimeouts and DBGCLoadComm-
Timeouts API functions.

Table 7. Timeout Value Constants

Constant Value Description

MAXSENDWAITSECS 5 Maximum time, in seconds,
that network send routines
will wait for a socket to
become available.

MAXSENDOPSECS 30 Maximum time, in seconds,
that network send routines
will take to complete an
operation.

MAXRECVWAITSECS 5 Maximum time, in seconds,
that network receive
routines will wait for a
socket to become available.

MAXRECVOPSECS 30 Maximum time, in seconds,
that network receive
routines will take to
complete an operation.

Appendix A. Data Structures and Constants

100 Dialect Database Gateway 5.4a Programmer's Reference Guide

Network Settings

Table 8 that follows lists constants that define various
network settings and values that affect only TCP/IP
functions. These values cannot be changed and are provided
for informational purposes only.

Table 8. Constants and Network Settings

Constant Value Description

SLEEPFOR_PERIOD 1000 Period, in milliseconds, that
network routines pause in
between attempts to acquire a
socket.

MAX_SR_RETRIES 5 Maximum number of
transmission (sending or
receiving) retries.

Data Types

Table 9 that follows lists constants that define ODBC data
types as translated by the DBG Server software.

Table 9. Data Type Constants

Constant Value Description

DBG_DT_CHAR 1 Character data.

DBG_DT_DOUBLE 8 IEEE double-precision floating
point.

DBG_DT_BIT -7 A bit flag (usually used to
represent Boolean values).

DBG_DT_STINYINT -26 Signed tiny integer (8 bits).

DBG_DT_UTINYINT -28 Unsigned tiny integer (8 bits).

DBG_DT_SSHORT -15 Signed short integer (16 bits).

DBG_DT_USHORT -17 Unsigned short integer (16 bits).

DBG_DT_SLONG -16 Signed long integer (32 bits).

Appendix A. Data Structures and Constants

 Dialect Database Gateway 5.4a Programmer's Reference Guide 101

Constant Value Description

DBG_DT_ULONG -18 Unsigned long integer (32 bits).

DBG_DT_FLOAT 7 IEEE single-precision floating
point.

DBG_DT_BINARY -2 Raw binary.

DBG_DT_DATE 9 Database date translated into a
DBG_DATE structure.

DBG_DT_TIME 10 Database time translated into a
DBG_TIME structure.

DBG_DT_TIMESTAM
P

11 Database timestamp translated
into a DBG_TIMESTAMP
structure.

Appendix A. Data Structures and Constants

102 Dialect Database Gateway 5.4a Programmer's Reference Guide

 Dialect Database Gateway 5.4a Programmer's Reference Guide 103

Appendix B. Condition Values

This appendix lists common condition values returned by the
DBG Server or by the client API. Table 10 lists each
condition by its (numeric) value, along with its description.

Table 10. Condition Values

Value Condition Description

0 ERR_DBG_NONE No error.

1 ERR_DBG_INVALID_ARGS Invalid arguments.

2 ERR_DBG_UNDEFINED_FUNC Undefined function.

3 ERR_DBG_NET_STARTUP Error initializing network
transport.

4 ERR_DBG_NET_INVALID_-
NAME

Cannot find host server name.

5 ERR_DBG_NET_INVALID_-
SOCKET

Invalid network socket.

6 ERR_DBG_NET_CONNECT Cannot connect to server.

7 ERR_DBG_NET_NOT_CON-
NECTED

Not currently connected to a
server.

8 ERR_DBG_NET_RECV Error receiving data over
network.

9 ERR_DBG_NET_SEND Error sending data over
network.

10 ERR_DBG_ALREADY_EXISTS The API or server object already
exists.

Appendix B. Condition Values

104 Dialect Database Gateway 5.4a Programmer's Reference Guide

Value Condition Description

11 ERR_DBG_NOMEM_SRV The server cannot allocate
memory.

12 ERR_DBG_NOMEM_CLT The client cannot allocate
memory.

13 ERR_DBG_BAD_CONNHND Invalid connection handle.

14 ERR_DBG_NODATA No records or columns.

15 ERR_DBG_NOPREV No previous record or column.

16 ERR_DBG_NONEXT No next record or column.

17 ERR_DBG_INVALIDBGEC Invalid current record.

18 ERR_DBG_INVALIDCOL Invalid column name.

19 ERR_DBG_NOESTABCONN The connection is not
established.

20 ERR_DBG_ODBC_ALLOCSTMT An error was encountered
during SQLAllocStmt.

21 ERR_DBG_ODBC_EXECDIRECT An error was encountered
during SQLExecDirect.

22 ERR_DBG_ODBC_BINDCOL An error was encountered
during SQLBindCol.

23 ERR_DBG_ODBC_NUM-
RESULTCOLS

An error was encountered
during SQLNumResultCols.

24 ERR_DBG_ODBC_COLAT-
TRTYPE

An error was encountered
during
SQLColAttributes(SQL_COLUMN
_TYPE).

25 ERR_DBG_ODBC_COLATTRLEN An error was encountered
during
SQLColAttributes(SQL_COLUMN
_LENGTH).

Appendix B. Condition Values

 Dialect Database Gateway 5.4a Programmer's Reference Guide 105

Value Condition Description

26 ERR_DBG_ODBC_COLAT-
TRNAME

An error was encountered
during
SQLColAttributes(SQL_COLUMN
_NAME).

27 ERR_DBG_ODBC_FETCH An error was encountered
during SQLFetch.

28 ERR_DBG_INVALIDCOLTYPE SQLColAttributes(SQL_COLUMN
_TYPE) returned an invalid type.

29 ERR_DBG_INVALIDPIPENAME The pipe name is invalid.

30 ERR_DBG_UNSUPPORTEDTYPE The datatype is not supported
by the Server.

31 ERR_DBG_CONNAVAILTIME-
OUT

A timeout occurred while
attempting to find an available
connection.

32 ERR_DBG_BROKENPIPE A broken pipe was detected.

33 ERR_DBG_NOTFOUND The object was not found.

34 ERR_DBG_BLOCK_SIGNAL The blocking handle was
signaled.

35 ERR_DBG_BLOCK_TIMEOUT The blocking handle timed out.

36 ERR_DBG_ODBC_PREPARE An error was encountered
during SQLPrepare.

37 ERR_DBG_ODBC_BINDPARAM An error was encountered
during SQLBindParam.

38 ERR_DBG_ODBC_EXECUTE An error was encountered
during SQLExecute.

39 ERR_DBG_ODBC_SETSTMT-
OPTION

An error was encountered
during SQLSetStmtOption.

40 ERR_DBG_ODBC_GETDATA An error was encountered
during SQLGetData.

Appendix B. Condition Values

106 Dialect Database Gateway 5.4a Programmer's Reference Guide

Value Condition Description

41 ERR_DBG_INVALID_CONN-
TYPE

Invalid connection type.

42 ERR_DBG_INVALID_WORK-
AREA

Invalid workarea.

996 ERR_SVC_INACTIVE Service is not in an active state.

997 ERR_DBG_EXCEPT The connection handle for an
RPC connection is invalid or a
general network exception
occurred.

998 ERR_DBG_INVALID_CONN_-
HANDLE

The connection handle is invalid.

999 ERR_DBG_SIGNON Cannot sign on to the Server.

 Dialect Database Gateway 5.4a Programmer's Reference Guide 107

Appendix C. The mivrdbg User
Function

This appendix describes the mivrdbg User Function for the
Meridian Integrated IVR 2.0, Meridian OPEN IVR 2.0, and
Symposium OPEN IVR 4.0.

Overview

The mivrdbg process is an interface to the DBG API for SCO
UNIX, which is implemented as an IVR User Function. Using
the interface, an IVR script can gain access to the most com-
monly used DBG API functions, including the ability to
communicate with any database supporting the ODBC stand-
ard.

SQL Support

DBG does not perform any special processing on SQL
statements, and acts as a pass-through system for SQL
requests. A successful execution will occur as long as the
SQL statement submitted to DBG (and passed on to the
database) is valid for that database.

Workareas

The DBG API introduces the concept of a workarea where all
data and status information regarding a SQL session is
stored. After opening a workarea (using the OpenWork-
area user function described on page 112), a script may
execute SQL statements, retrieving data returned by the

Appendix C. The mivrdbg User Function

108 Dialect Database Gateway 5.4a Programmer's Reference Guide

server. A script may open as many workareas as needed,
combining data from multiple back-end databases.

Note: When a SQL statement is executed, the
workarea is cleared of both data and status
information.

Background Processing

DBG also supports background processing, which enables a
client to submit a SQL for processing even when the Server
is idle. This functionality is especially useful in those circum-
stances where the outcome of a SQL statement is not impor-
tant to the client. For example, a typical example of back-
ground processing is a client that wishes to perform an
operation that may take some time to complete, such as a
bulk update. In this case, the client can request that the
Server process the statement during an idle period; the
function call into the Server immediately returns as the
system will not wait for the statement to complete.

IVR Script

mivrdbg

account,balance

00001,23.04
00002,1562.23
00003,0.00

Workarea #2

account,name,age

00001,Peter Pan, 15
00002,Fred Flintstone,3004
00003,Georgie Rebane,21

Workarea #1

DBG Server on
Windows NT To databases

TCP/IP

Figure 14. Concept of a Workarea

Appendix C. The mivrdbg User Function

 Dialect Database Gateway 5.4a Programmer's Reference Guide 109

Configuration

The mivrdbg process requires an initialization file
(mivrdbg.ini) that specifies the name of the Windows NT
computer hosting the DBG Server. This initialization file must
be located in the same directory as the mivrdbg executable.
For Symposium and Meridian OPEN IVRs, this is typically the
/u/nortel/exe directory, while for both Symposium and
Meridian Integrated IVRs, the directory is typically
/u/ivr/exe.

The first line of the file must contain the DNS name of the
host or its IP address for the DBG Server.

The second, optional, line of the initialization file specifies
whether the type of connection the User Function should
maintain between the IVR and the DBG Server. Leave this
line blank or specify "dynamic connections" (the default)
to have the User Function close the previous connection, if
any, and establish a new one each time an interface function
is called. Alternatively, you can specify "static
connections" to maintain static connections.

Following are two examples of the mivrdbg.ini file. Both use
the DBG Server hosted on the corp_srv Windows NT
computer. The first initialization file specifies that the User
Function should maintain static connections, the second
indicates that a new connection is to be established each
time an interface function is called (the previous connection,
if any, will be closed before a new connection is opened).

Example 1

corp_srv
static connections

Example 2

corp_srv
dynamic connections

Appendix C. The mivrdbg User Function

110 Dialect Database Gateway 5.4a Programmer's Reference Guide

Communication

Communication between the IVR and the DBG Server is
handled over TCP/IP with a new connection made each time
a SQL statement is executed.

If you plan to use the DNS name of the DBG Server host
computer, you must also define that computer's name in a
DNS Server that the IVR has been configured to use.
Alternatively, you may place the name of the host and its IP
address in the /etc/hosts file of the IVR system if no DNS
Server is available or configured.

Refer to your SCO UNIX documentation for information on
configuring for DNS Servers and/or maintenance of the
/etc/hosts file.

Interface Functions

In all, there are nine interface functions:

• OpenWorkarea

• CloseWorkarea

• ExecuteSQL

• MoveFirst

• MoveLast

• MoveNext

• MovePrevious

• GetColumnData

• ExecuteSQLFromFile

Details for each of these interface functions follow, after an
explanation for return values and data types an sizes.

Appendix C. The mivrdbg User Function

 Dialect Database Gateway 5.4a Programmer's Reference Guide 111

Return Values

All mivrdbg functions return two sets of return values that
may be used by the IVR script for branching purposes:

• A numeric return code of 0 or 1 indicating success or
failure respectively.

• A string in buffer 1 containing a more detailed
description of the error encountered (if any).

If a function call is successful, buffer 1 will contain the word
SUCCESS. If the function call fails, buffer 1 will contain the
word FAIL_xxxxx where xxxxx is a short description of
the error.

The primary reason for the string return code in buffer 1 is
to ease debugging of IVR scripts using a tool such as the
IVR's sam utility.

Data Types and Sizes

The current release of mivrdbg only supports data strings.
The length of data stored and retrieved is limited to the
buffer size allowed by the IVR Application Editor (xae).

Appendix C. The mivrdbg User Function

112 Dialect Database Gateway 5.4a Programmer's Reference Guide

OpenWorkarea
51

Buffer Description

none None

Buffer Description

0 SUCCESS or FAIL_xxxx

1 DBG error code

2 Workarea number (WA)

Value Description

0 Success

1 Failure

Open a local workarea.

Function
Code

Inputs

Outputs

Return
Codes

Remarks

Appendix C. The mivrdbg User Function

 Dialect Database Gateway 5.4a Programmer's Reference Guide 113

CloseWorkarea
52

Buffer Description

0 Workarea number (WA)

Buffer Description

0 SUCCESS or FAIL_xxxx

1 DBG error code

Value Description

0 Success

1 Failure

Close a previously opened local workarea.

Function
Code

Inputs

Outputs

Return
Codes

Remarks

Appendix C. The mivrdbg User Function

114 Dialect Database Gateway 5.4a Programmer's Reference Guide

ExecuteSQL
53

Buffer Description

0 Workarea number (WA)

1 Pipe name

2 Legal SQL statement

3 Max records required for return

4 Background operation (Y=Yes; N=No); No
records returned if Yes.

Buffer Description

0 SUCCESS or FAIL_xxxx

1 DBG error code

2 ODBC error code (Consult your ODBC
documentation.)

3 ODBC status (Consult your ODBC
documentation.)

4 Native error code (Consult your driver
documentation.)

5 Records returned

6 Columns returned

Value Description

0 Success

1 Failure

Function
Code

Inputs

Outputs

Return
Codes

Appendix C. The mivrdbg User Function

 Dialect Database Gateway 5.4a Programmer's Reference Guide 115

Execute a SQL statement on the server.

MoveFirst
54

Buffer Description

0 Workarea number (WA)

Buffer Description

0 SUCCESS or FAIL_xxxx

1 DBG error code

Value Description

0 Success

1 Failure

Move to the first record in the workarea.

Remarks

Function
Code

Inputs

Outputs

Return
Codes

Remarks

Appendix C. The mivrdbg User Function

116 Dialect Database Gateway 5.4a Programmer's Reference Guide

MoveLast
55

Buffer Description

0 Workarea number (WA)

Buffer Description

0 SUCCESS or FAIL_xxxx

1 DBG error code

Value Description

0 Success

1 Failure

Move to the last record in the workarea.

Function
Code

Inputs

Outputs

Return
Codes

Remarks

Appendix C. The mivrdbg User Function

 Dialect Database Gateway 5.4a Programmer's Reference Guide 117

MoveNext
56

Buffer Description

0 Workarea number (WA)

Buffer Description

0 SUCCESS or FAIL_xxxx

1 DBG error code

Value Description

0 Success

1 Failure

Move to the next record in the workarea.

Function
Code

Inputs

Outputs

Return
Codes

Remarks

Appendix C. The mivrdbg User Function

118 Dialect Database Gateway 5.4a Programmer's Reference Guide

MovePrevious
57

Buffer Description

0 Workarea number (WA)

Buffer Description

0 SUCCESS or FAIL_xxxx

1 DBG error code

Value Description

0 Success

1 Failure

Move to the previous record in the workarea.

Function
Code

Inputs

Outputs

Return
Codes

Remarks

Appendix C. The mivrdbg User Function

 Dialect Database Gateway 5.4a Programmer's Reference Guide 119

GetColumnData
58

Buffer Description

0 Workarea number (WA)

1 Column name

2 C-style format string (optional)

Buffer Description

0 SUCCESS or FAIL_xxxx

1 DBG error code

2 Column data (up to 30 characters)

3 Remainder of data up to MAX_BUFS

Value Description

0 Success

1 Failure

Retrieve a column's data from the current record.

If a third parameter (#2) is provided, mivrdbg will format
the data using the C-style format string specified. You must
ensure that the format string you provide conforms to
C-style printf() format strings and that it is valid for the
data type which is being returned by the database. See
below for a discussion of how the function formats data.

Function
Code

Inputs

Outputs

Return
Codes

Remarks

Appendix C. The mivrdbg User Function

120 Dialect Database Gateway 5.4a Programmer's Reference Guide

Note: If parameter #2 is not specified, mivrdbg
will retrieve the raw data from the workarea. In
this case, the data must be a string data type or
unpredictable results will occur.

The software routing that is responsible for formatting data
in mivrdbg ultimately uses the C runtime library functions for
formatting of data. While all data is retrieved from the DBG
record buffer in binary format, it is converted to the proper
type before being passed to the C runtime library routines
along with the format string specifying how the data is to be
formatted in the buffer returned to Generations.

Format Description

Strings String data returned from the database is
null terminated, and can therefore be
directly processed by the C runtime library
without conversion. Format strings related
to string data (the "%s" family) may be
used to format string data.

For example, the string "Hello world" may
be formatted using "%s" resulting in
"Hello world"

Single precision
floating point

Single precision floating numbers are
processed using the format strings for
floating point numbers.

For example, the binary double value
881.2210000 may be formatted using
"%8.3f" resulting in "881.221".

Double precision
floating point

Double precision floating numbers are
processed using the format strings for
floating point numbers.

For example, the binary double value
123.4500000 may be formatted using
"%7.2f" resulting in "123.45".

Data
Formatting

Appendix C. The mivrdbg User Function

 Dialect Database Gateway 5.4a Programmer's Reference Guide 121

Format Description

Bit fields Bit fields are usually used to represent
Boolean values such as TRUE and FALSE.
The mivrdbg process converts bit fields to a
single character representing of each ("Y"
and "N"). A value of 0 is translated as "N";
all other values are translated as "Y".
Format bit fields using string type format
strings.

For example, A bit field of 0 may be
formatted using "%s" resulting in "N".

A bit field of 1 may be formatted using
"%s" resulting in "Y".

Signed tinyint Signed tinyint values are converted to
signed shorts. See that discussion below.

Unsigned tinyint Unsigned tinyint values are converted to
unsigned shorts. See that discussion below.

Signed short Signed short numbers are represented as
signed 16-bit integers by DBG. Format
strings related to signed short values (such
as "%d") may be used.

For example, the signed short value -62
may be formatted using "%d" resulting in
"-62."

Unsigned short Unsigned short numbers are represented as
unsigned 16-bit integers by DBG. Format
strings related to unsigned short values
(such as "%u") may be used.

For example, the unsigned short value 37
may be formatted using "%u" resulting in
"37."

Appendix C. The mivrdbg User Function

122 Dialect Database Gateway 5.4a Programmer's Reference Guide

Format Description

Signed long Signed long numbers are represented as
signed 32-bit integers by DBG. Format
strings related to signed long values (such
as "%ld") may be used.

For example, the signed long value -78291
may be formatted using "%ld" resulting in
"-78291."

Unsigned long Unsigned long numbers are represented as
unsigned 32-bit integers by DBG. Format
strings related to unsigned long values
(such as "%lu") may be used.

For example, the unsigned long value
561281 may be formatted using "%lu"
resulting in "561281."

Dates Dates retrieved from a database are
converted to a database independent. A
date consists of a month, day, and year
(inclusive of century), each being a 16-bit
unsigned integer. The formatting routing for
a date passes the month, date, and year
portions of the date in that order to the
runtime library for processing - your format
string must process all three these
parameters

For example, assuming a date of Dec 1,
1997, the following parameters are passed
"12", "1", "1997". A format string such as
"%02u/%02u/%04u" will result in
"12/01/1997."

Appendix C. The mivrdbg User Function

 Dialect Database Gateway 5.4a Programmer's Reference Guide 123

Format Description

Times Times retrieved from a database are
converted to a database independent. Time,
which is represented in military time,
consists of a hour, minute, and second,
each being a 16-bit unsigned integer. The
formatting routing for a date passes the
hour, minute, and second portions of the
time in that order to the runtime library for
processing: your format string must process
all three these parameters.

For example, assuming a time of 25
minutes and 3 seconds after 1PM, the
following parameters are passed "13",
"25", "3". A format string such as
"%02u:%02u:%02u" will result in
"13:25:03."

Appendix C. The mivrdbg User Function

124 Dialect Database Gateway 5.4a Programmer's Reference Guide

Format Description

Timestamps Timestamps fields consist of a date and
time portion, the time portion having an
additional field of fraction indicating the
number of milliseconds (thousandths of a
second) between seconds. Fractions range
from 0 to 999.

Time is represented in military time. Each
field is represented as 16-bit unsigned
integer with the exception of the fraction
field, which is represented as a 32-bit
unsigned long.

The formatting routing for a timestamp
passes the month, day, year, hour, minute,
second, and fraction portions of the
timestamp in that order to the runtime
library for processing - your format string
must process all seven these parameters.

For example, assuming a timestamp of 25
minutes, 3 seconds, and 260 milliseconds
after 1:00 PM on Christmas day, 1997, the
following parameters are passed "12",
"25", "1997", "13", "25", "3", "260". A
format string such as
"%02u:%02u:%04u-
%02u:%02u:%02u:%03u" will result in
"12/25/1997-13:25:03:260."

Note: The user function will split a column's data
across the output buffers if the data cannot fit into
a single buffer. The number of buffers the data is
split across and the size of each buffer is
dependent on the release of the IVR.

Appendix C. The mivrdbg User Function

 Dialect Database Gateway 5.4a Programmer's Reference Guide 125

ExecuteSQLFromFile
59

Buffer Description

0 Workarea number (WA)

1 File name. Full path specification with file
structure as follows:

• xxxxxx – pipe name
• 999999 – max records to return
• Y or N – background operation (Y=Yes;

N=No)
• ssss… - SQL line 1
• ssss… - SQL line 2
• ssss… - SQL line n (up to max of 8192

bytes)

2 Param1 (optional) - @1@ in SQL statement

3 Param2 (optional) - @2@ in SQL statement

4 Param3 (optional) - @3@ in SQL statement

5 Param4 (optional) - @4@ in SQL statement

6 Param5 (optional) - @5@ in SQL statement

7 Param6 (optional) - @6@ in SQL statement

8 Param7 (optional) - @7@ in SQL statement

9 Param8 (optional) - @8@ in SQL statement

Buffer Description

0 SUCCESS or FAIL_xxxx

1 DBG error code

Function
Code

Inputs

Outputs

Appendix C. The mivrdbg User Function

126 Dialect Database Gateway 5.4a Programmer's Reference Guide

Buffer Description

2 ODBC error code (Consult your ODBC
documentation.)

3 ODBC status (Consult your ODBC
documentation.)

4 Native error code (Consult your driver
documentation.)

5 Records returned

6 Columns returned

Value Description

0 Success

1 Failure

Similar to function 53 (ExecuteSQL); the difference being
that parameters are loaded from a file rather than passed
via the buffers.

Note: The SQL statement in the file may consist
of multiple lines, each up to a maximum of 256
characters per line. The user function will concate-
nate successive lines from the file into a single
SQL statement until the end of the file is reached.

Example showing a statement that retrieves a single caller
record from the customer table in the MyDatabasePipe
based on either entered social security number or home
telephone number.

MyDatabasePipe

1

N

Return
Codes

Remarks

Example
SQL File

Appendix C. The mivrdbg User Function

 Dialect Database Gateway 5.4a Programmer's Reference Guide 127

select name, addr1, addr2, city, state, zip
from cust

where ssn = '@1@' or home_tel = '@2@'

Appendix C. The mivrdbg User Function

128 Dialect Database Gateway 5.4a Programmer's Reference Guide

 Dialect Database Gateway 5.4a Programmer's Reference Guide 129

Appendix D. DBG UserDLL for
InterVoice IVR

This appendix describes the DLL for the InterVoice IVR.

Overview

DBG now includes a UserDLL that that facilitates
communication between Database Gateway (DBG) and
InterVoice's Interactive Voice Response (IVR) platform.

InterVoice IVR scripts can use this UserDLL to access most
Database Gateway functions and its ability to any database
that supports the ODBC standard.

Database support

DBG supports any database system that provides a 32-bit
ODBC driver for Windows NT. This list includes (but is not
limited to) Sybase, Oracle, Informix, DB/2, Microsoft SQL
Server, and Microsoft Access, Microsoft FoxPro, dBase,
Microsoft Excel, IBM AS/400, text files, Sybase SQL
Anywhere, Paradox, and RUMBA DRDA-32.

The following figure depicts a system in which the DBG API
accesses three database systems from a variety of clients.
Although this example includes only Oracle, DB/2 and
Microsoft Access, DBG can handle any database that
includes an ODBC interface for Windows NT.

Appendix D. DBG UserDLL for InterVoice IVR

130 Dialect Database Gateway 5.4a Programmer's Reference Guide

SQL support

 DBG acts as a "pass-through" system for SQL requests; in
other words, it performs no special processing on SQL
statements. As long as the SQL statement submitted to DBG
(and passed on to the database) is valid for that database,
execution will succeed.

Workareas

The DBG API uses a virtual "workarea" to store all data and
status information about an SQL session. After using the
OpenWorkarea user function to open a workarea, a script
may execute SQL statements to retrieve data returned by
the server. A script may open as many workareas as
needed, combining data from multiple back-end databases.

Appendix D. DBG UserDLL for InterVoice IVR

 Dialect Database Gateway 5.4a Programmer's Reference Guide 131

Background Processing

Background processing is a feature of DBG that allows a
client to submit a SQL statement for processing when the
server is idle. This functionality is especially useful in those
situations when the outcome of a SQL statement is not
important to the client. For example, consider a client that
wants to perform a lengthy operation like a bulk update. In
this case, the client can ask that the server process the
statement during an idle period. The function call into the
server returns immediately; the system does not wait for the
statement to complete.

Communication

A global connection between the InterVoice IVR and the
DBG server is maintained over RPC with TCP/IP as the
transportation layer. A reconnection procedure begins

Appendix D. DBG UserDLL for InterVoice IVR

132 Dialect Database Gateway 5.4a Programmer's Reference Guide

automatically after any network error that indicates a broken
connection between the IVR and the DBG server.

Installation and Configuration

If you chose not to install the DBG UserDLL when you first
installed the Win 32-bit DBG client, you can install it now by
following these steps:

1. Launch the Win 32-bit DBG client installation program
setup.exe.

"The Welcome window" appears (Figure 15).

2. Choose the option "Install the InterVoice-Brite extension
module" and click Next >.

3. After you agree to the license agreement and choose a
destination directory for the client files, the "The
Configuration window" appears (Figure 16).

Figure 15: The Welcome window

Appendix D. DBG UserDLL for InterVoice IVR

 Dialect Database Gateway 5.4a Programmer's Reference Guide 133

Figure 16: The Configuration window

4. Complete the following fields:

Server name: the name of the NT host machine
operating the DBG server.

Note: This host may be the same as the IVR.

Protocol: The transfer protocol required for
communication between the InterVoice-Brite extension
and the DBG server. Valid choices include Local RPC (if
both DBG and the extension reside on the same
computer), TCP/IP, Named Pipes, IPX, and SPX.

Trace File Name: the location and name of the log file
to create.

As illustrated in Figure 17, the setup program will modify
the registry settings under HKEY_LOCAL_MACHINE
SOFTWARE\Williams Telecommunications\
InterVoiceExtensions\DatabaseGateway.

Appendix D. DBG UserDLL for InterVoice IVR

134 Dialect Database Gateway 5.4a Programmer's Reference Guide

Troubleshooting

The log file can help you troubleshoot any problems that
occur. By analyzing its timestamped records of API accesses,
you can easily determine when the DBG UserDLL was loaded
and unloaded, what particular functions were called and
when, and the results of these function calls.

You can choose to "enable tracing" during installation or you
can enable tracing later by changing the registry key
HKEY_LOCAL_MACHINE SOFTWARE\Williams
Telecommunications\InterVoiceExtensions\DatabaseGateway
\Tracing to 1. The name of the log file is stored under
HKEY_LOCAL_MACHINE SOFTWARE\Williams
Telecommunications\InterVoiceExtensions\DatabaseGateway
\TraceFile.

Developing UserDLL forms in InterVoice InVision

You can add DBG UserDLL functions to your IVR applications
by dragging-and-dropping UserDLL forms into the InterVoice
InVision development workspace and then typing values in
the appropriate parameter fields. Located in the
%WINNT%/system32 directory, the DBG UserDLL is named
"dbgusr.dll," but you need only to enter dbgusr in the DLL
name field.

You must specify variable names for the output of DBG
UserDLL functions. Be sure to prefix each name with a
"greater than" sign (>), to identify it as a "pass-by-

Figure 17: dbgusr Registry settings

Appendix D. DBG UserDLL for InterVoice IVR

 Dialect Database Gateway 5.4a Programmer's Reference Guide 135

reference" parameter. Failure to include this prefix can cause
unexpected results.

Figure 18 contains a simple application.

Note: To avoid memory leaks, close the workarea
as soon as you no longer need it.

Interface functions

OpenWorkarea
• Open a local workarea

Name Type In/Out Description

hWa Integer Output The handle of
workarea

Figure 18: Sample InVision application

Remarks

Parameters

Appendix D. DBG UserDLL for InterVoice IVR

136 Dialect Database Gateway 5.4a Programmer's Reference Guide

SUCCESS 0

ERR_FAILED 501

ERR_INVALID_VARIABLE_TYPE 502

ERR_INVALID_FORMAT 503

ERR_FAILED_TO_CONNECT 504

ERR_CANNOT_OPEN_REGISTRY_KEY 505

CloseWorkarea
• Closes a previously opened local workarea

Name Type In/Out Description

hWa Integer Input The handle of previously
opened workarea

Returns

Example

Remarks

Parameters

Appendix D. DBG UserDLL for InterVoice IVR

 Dialect Database Gateway 5.4a Programmer's Reference Guide 137

SUCCESS 0

ERR_FAILED 501

ERR_INVALID_VARIABLE_TYPE 502

ERR_INVALID_FORMAT 503

ERR_FAILED_TO_CONNECT 504

ERR_CANNOT_OPEN_REGISTRY_KEY 505

ExecuteSQL
• Executes a SQL statement on the server

Name Type In/Out Description

hWa Integer Input Workarea handle obtained
from OpenWorkarea
function.

pipeName String Input Pipe name.

Returns

Example

Remarks

Parameters

Appendix D. DBG UserDLL for InterVoice IVR

138 Dialect Database Gateway 5.4a Programmer's Reference Guide

sql String Input Legal SQL statement.

maxRecs String Input Max records required for
return.

backgrd Integer Input Background operation (1 =
Yes, 0 = No).

recsRtn Integer Output Records returned for the SQL
query.

colRtn Integer Output Columns returned for the
SQL query.

SUCCESS 0

ERR_FAILED 501

ERR_INVALID_VARIABLE_TYPE 502

ERR_INVALID_FORMAT 503

ERR_FAILED_TO_CONNECT 504

ERR_CANNOT_OPEN_REGISTRY_KEY 505

MoveFirst
• Moves to the first record in the workarea

Name Type In/Out Description

HWa Integer Input Workarea handle obtained from
OpenWorkarea function

SUCCESS 0

ERR_FAILED 501

ERR_INVALID_VARIABLE_TYPE 502

ERR_INVALID_FORMAT 503

ERR_FAILED_TO_CONNECT 504

Returns

Remarks

Parameters

Returns

Appendix D. DBG UserDLL for InterVoice IVR

 Dialect Database Gateway 5.4a Programmer's Reference Guide 139

ERR_CANNOT_OPEN_REGISTRY_KEY 505

MoveLast
• Moves to the last record in the workarea

Name Type In/Out Description

HWa Integer Input Workarea handle obtained from
OpenWorkarea function

SUCCESS 0

ERR_FAILED 501

ERR_INVALID_VARIABLE_TYPE 502

ERR_INVALID_FORMAT 503

ERR_FAILED_TO_CONNECT 504

ERR_CANNOT_OPEN_REGISTRY_KEY 505

MoveNext
• Moves to the next record in the workarea

Name Type In/Out Description

HWa Integer Input Workarea handle obtained from
OpenWorkarea function

SUCCESS 0

ERR_FAILED 501

ERR_INVALID_VARIABLE_TYPE 502

ERR_INVALID_FORMAT 503

ERR_FAILED_TO_CONNECT 504

Remarks

Parameters

Returns

Remarks

Parameters

Returns

Appendix D. DBG UserDLL for InterVoice IVR

140 Dialect Database Gateway 5.4a Programmer's Reference Guide

ERR_CANNOT_OPEN_REGISTRY_KEY 505

MovePrevious
• Moves to the previous record in the workarea

Name Type In/Out Description

HWa Integer Input Workarea handle obtained from
OpenWorkarea function

SUCCESS 0

ERR_FAILED 501

ERR_INVALID_VARIABLE_TYPE 502

ERR_INVALID_FORMAT 503

ERR_FAILED_TO_CONNECT 504

ERR_CANNOT_OPEN_REGISTRY_KEY 505

GetColumnData
• Retrieves a column's data from the current record

If a third parameter format is provided, DBG
UserDLL will format the data using the C-style
format string specified. You must ensure that the
format string you provide conforms to C-style
printf() format strings and that it is valid for the
data type which is being returned by the database.

Note: If parameter format is not specified,
DBG UserDLL will retrieve the raw data from the
workarea. In this case the data must be a string
data type or unpredictable results will occur.

Remarks

Parameters

Returns

Remarks

Appendix D. DBG UserDLL for InterVoice IVR

 Dialect Database Gateway 5.4a Programmer's Reference Guide 141

Name Type In/Out Description

HWa Integer Input Workarea handle obtained
from OpenWorkarea function

ColName String Input Column name

Format String Input (OPTIONAL) C-style format
string, discussed in detail in
"Data Formatting" below.

Data String Output Data returned

Data Formatting

Strings

String data returned from the database is null terminated,
and can therefore be directly processed by the C runtime
library without conversion. Format strings related to string
data (the "%s" family) may be used to format string data.

For example: The string "Hello world" may be formatted using
"%s" resulting in "Hello world"

Single precision floating point

Single precision floating numbers are processed using the
format strings for floating point numbers.

For example: The binary double value 881.2210000 may be
formatted using "%8.3f" resulting in "881.221".

Double precision floating point

Double precision floating numbers are processed using the
format strings for floating point numbers.

For example: The binary double value 123.4500000 may be
formatted using "%7.2f" resulting in "123.45".

Parameters

Appendix D. DBG UserDLL for InterVoice IVR

142 Dialect Database Gateway 5.4a Programmer's Reference Guide

Bit fields

Bit fields are usually used to represent boolean values such as
TRUE and FALSE. DBG UserDLL converts bit fields to a single
character representing of each ("Y" and "N"). A value of 0 is
translated as "N", all other values are translated as "Y". Format
bit fields using string type format strings.

For example: A bit field of 0 may be formatted using "%s"
resulting in "N". A bit field of 1 may be formatted using "%s"
resulting in "Y".

Signed tinyint

Signed tinyint values are converted to signed shorts. See below.

Unsigned tinyint values are converted to unsigned shorts. See
that discussion below.
Signed short
Signed short numbers are represented as signed 16-bit integers
by DBG. Format strings related to signed short values (such as
"%d") may be used.

For example: The signed short value -62 may be formatted
using "%d" resulting in "-62".
Unsigned short
Unsigned short numbers are represented as unsigned 16-bit
integers by DBG. Format strings related to unsigned short values
(such as "%u") may be used.

For example: The unsigned short value 37 may be formatted
using "%u" resulting in "37".

Unsigned tinyint

Appendix D. DBG UserDLL for InterVoice IVR

 Dialect Database Gateway 5.4a Programmer's Reference Guide 143

Signed long
Signed long numbers are represented as signed 32-bit integers
by DBG. Format strings related to signed long values (such as
"%ld") may be used.

For example: The signed long value -78291 may be formatted
using "%ld" resulting in "-78291".
Unsigned long
Unsigned long numbers are represented as unsigned 32-bit
integers by DBG. Format strings related to unsigned long values
(such as "%lu") may be used.

For example: The unsigned long value 561281 may be
formatted using "%lu" resulting in "561281".
Dates
Dates retrieved from a database are converted to a database
independent. A date consists of a month, day, and year
(inclusive of century), each being a 16-bit unsigned integer. The
formatting routing for a date passes the month, date, and year
portions of the date in that order to the runtime library for
processing - your format string must process all three these
parameters

For example: Assuming a date of Dec 1, 1997, the following
parameters are passed "12", "1", "1997". A format string such
as "%02u/%02u/%04u" will result in "12/01/1997".
Times
Times retrieved from a database are converted to a database
independent. A time consists of a hour, minute, and second,
each being a 16-bit unsigned integer. The formatting routing for
a date passes the hour, minute, and second portions of the time
in that order to the runtime library for processing - your format
string must process all three these parameters. Note that time is
represented in military time.

For example: Assuming a time of 25 minutes and 3 seconds
after 1pm, the following parameters are passed "13", "25", "3".
A format string such as "%02u:%02u:%02u" will result in
"13:25:03".

Appendix D. DBG UserDLL for InterVoice IVR

144 Dialect Database Gateway 5.4a Programmer's Reference Guide

Timestamps
Timestamps fields consist of a date and time portion, the time
portion having an additional field of fraction indicating the
number of milliseconds (thousandths of a second) between
seconds. Fractions range from 0 to 999.

Each field is represented as 16-bit unsigned integer with the
exception of the fraction field which is represented as a 32-bit
unsigned long.

The formatting routing for a timestamp passes the month, day,
year, hour, minute, second, and fraction portions of the
timestamp in that order to the runtime library for processing -
your format string must process all seven these parameters.
Note that time is represented in military time.

For example: Assuming a timestamp of 25 minutes, 3 seconds,
and 260 milliseconds after 1pm on Christmas day, 1997, the
following parameters are passed "12", "25", "1997", "13",
"25", "3", "260". A format string such as
"%02u:%02u:%04u-%02u:%02u:%02u:%03u" will
result in "12/25/1997-13:25:03:260"

SUCCESS 0

ERR_FAILED 501

ERR_INVALID_VARIABLE_TYPE 502

ERR_INVALID_FORMAT 503

ERR_FAILED_TO_CONNECT 504

ERR_CANNOT_OPEN_REGISTRY_KEY 505

Returns

Appendix D. DBG UserDLL for InterVoice IVR

 Dialect Database Gateway 5.4a Programmer's Reference Guide 145

ExecuteSQLFromFile
• Similar to ExecuteSQL function, with the exception that

parameters are loaded from a file rather than passed via
the buffers.

Name Type In/Out Description

hWa Integer Input Workarea handle obtained
from OpenWorkarea
function

fileName String Input File name (full path
specification). The file
contains text, structured as
follows:

xxxxxx Pipe name

999999 Max records to return

Example

Remarks

Parameters

Appendix D. DBG UserDLL for InterVoice IVR

146 Dialect Database Gateway 5.4a Programmer's Reference Guide

Y or N Background operation
(Y = Yes, N = No)

ssss1... SQL line 1

ssss2... SQL line 2

SQL line n (up to total
of 8192 bytes)

recsRtn Integer Output Number of record returned
for the executed SQL

colsRtn Integer Output Number of columns
returned for the executed
SQL

param1 String Input [optional] - @1@ in SQL
statement.

Param2 String Input [optional] - @2@ in SQL
statement

Param3 String Input [optional] - @3@ in SQL
statement

Param4 String Input [optional] - @4@ in SQL
statement

Param5 String Input [optional] - @5@ in SQL
statement

Param6 String Input [optional] - @6@ in SQL
statement

SUCCESS 0

ERR_FAILED 501

ERR_INVALID_VARIABLE_TYPE 502

ERR_INVALID_FORMAT 503

ERR_FAILED_TO_CONNECT 504

ERR_CANNOT_OPEN_REGISTRY_KEY 505

Returns

Appendix D. DBG UserDLL for InterVoice IVR

 Dialect Database Gateway 5.4a Programmer's Reference Guide 147

The following example file shows a statement that retrieves
a single caller record from the customer table in the
MyDatabasePipe based on either entered social security
number or home telephone number.

MyDatabasePipe

1

N

select name, addr1, addr2, city, state, zip
from cust

where ssn = '@1@' or home_tel = '@2@'

Example

Appendix D. DBG UserDLL for InterVoice IVR

148 Dialect Database Gateway 5.4a Programmer's Reference Guide

 Dialect Database Gateway 5.4a Programmer's Reference Guide 149

Appendix E. Licensing

The Williams License Manager (License Manager) is a multi-
purpose system that works in conjunction with the hardware
license key to provide licensing services to the Dialect family
of products, including Database Gateway. Together, the
License Manager and the hardware license key:

• Ensure that you have the legal right to use your
purchased product.

• Enable you to run one copy of the DBG Server for each
server license you acquire.

• Provide you with additional benefits of owning legal
software, such as ongoing technical support.

To facilitate the terms of your purchase agreement and your
licensing requests, the License Manager offers "per instance"
server licenses, which are particularly beneficial for maintain-
ing a standby or backup system for the DBG Server.

With a "per instance" server license, you may install more
than one copy of the DBG Server software on more than one
Server. However, under those same terms, you must acquire
one server license for each DBG Server that you run. For
example, if one Database Gateway service stops, it can
return its license to the License Manager, so that an
alternate DBG Server may acquire a license and start its
service.

In addition, even if the License Manager Server itself stops,
Database Gateway's built-in "grace period" enables the
service to continue its operation for 30 minutes more. If the
License Manager Server returns during this period, Database
Gateway will continue to function as normal. However, if the
License Manager does not return online within the grace

Appendix E. Licensing

150 Dialect Database Gateway 5.4a Programmer's Reference Guide

period, Database Gateway will cease to operate, and must
be restarted when the License Manager Server returns
online.

Separately, if you only want to evaluate Database Gateway,
Williams offers an alternative to the License Manager and the
hardware license key with a temporary license keycode. A
keycode limits the time period in which you can use Database
Gateway, and may be acquired on an interim basis from your
Williams representative.

For additional information about licensing, contact your
Williams representative. For additional information about the
License Manager, see the License Manager Installation
Guide.

Index

A
APIs (Application

Programming
Interfaces)
architecture, 47–48
compiling, 49
constants, 98–101
data structures, 95–98
distribution files, 15
function

declarations, 49
listing, 51–94

installation, 12
overview, 44–46
programming examples,

48
requirements, 8

B
BPIs (Broken Pipe

Indicators)
overview, 28–33
pipes

identifying, 36
properties

configuring, 29–31
deleting, 32–33
modifying, 31–32

syntax rules, 30–31

C
client APIs. See APIs

(Application
Programming
Interfaces)

CloseWorkarea, 113, 136
condition values, 103–6
Configuration Tool

closing, 19
prerequisites, 18
starting, 18–19
using, 17–44

connection
ODBC pipe, 35
tuning, 37–40

constants, 98–101
data types, 100–101
network

settings, 100
timeouts, 99

sizes, 98–99
continuing the service, 45–

46

D
data structures

DBG_DATE, 95–96
DBG_REQ, 96–97
DBG_TIME, 97
DBG_TIMESTAMP, 97–

98
DBG_DATE, 95–96
DBG_REQ, 96–97
DBG_TIME, 97
DBG_TIMESTAMP, 97–98
DBGCCloseWorkarea, 55–

56
DBGCConnect, 56–59

DBGCDisconnect, 59
DBGCErrorMsg, 60–61
DBGCExecute, 48, 61–65

variable-length column
selections, 61

DBGCGetAPIVersion, 65–
68

DBGCGetColData, 69–70
DBGCGetColName, 70–72
DBGCGetColSize, 72–73
DBGCGetColType, 73–74
DBGCGetODBCColType,

75–76
DBGCGetODBCErrMsg, 76–

77
DBGCGetODBCErrMsgLen,

78–79
DBGCGetServerVersion,

79–82
DBGCInitialize, 82–83
DBGCLoadCommTimeouts,

83–85
DBGCMoveFirst, 85–86
DBGCMoveLast, 86–87
DBGCMoveNext, 87–88
DBGCMovePrevious, 89–90
DBGCOpenWorkarea, 90–

91
DBGCReset, 91–92
DBGCSetCommTimeouts,

92–94
DBGCShutdown, 94
Dialect Database Gateway

APIs, 44–46
box contents, 7
condition values, 103–6
Configuration Tool, 17–

44

constants, 98–101
data handling and

variable-length
columns, 50–51

data structures, 95–98
installation, 9–12
InterVoice IVR UserDLL,

129–32
licensing options, 26–28,

149–50
mivrdbg

overview, 107–10
overview, 1
requirements, 8–9
server

evaluation, 149–50
grace period, 149–50

dongle. See hardware
license key

E
ExecuteSQL, 114, 137
ExecuteSQLFromFile, 125–

27, 145

F
function

declarations, 49
listing, 51–94

G
GetColumnData, 119–24,

140

H
hardware license key, 7

I
installation

APIs, 12
prerequisites, 8
requirements, 8–9
SDK, 10–11
server, 10–11
software, 9–12

Index

Error! No text of specified style in document. 153

Software Development
Kit (SDK), 10–11

InterVoice IVR UserDLL
background processing,

131
communication, 131
installation and

configuration, 132–34
overview, 129–32
sql support, 130
troubleshooting, 134
workareas, 130

K
keycodes. See licensing

L
License Manager

and grace periods, 149–
50

description, 149–50
server, 26–28, 149–50

License Manager
Installation Guide, 8

licensing, 4
and application

distribution, 15
general information,

149–50
keycodes, 26–28, 149–

50
options, 26–28

linking, 49–50

M
mivrdbg

communication, 110
configuration, 109
data sizes and types,

111
overview, 107–10
return values, 111
user function, 9

mivrdbginterface
functions, 110–27

MoveFirst, 115, 138
MoveLast, 116, 139
MoveNext, 117, 139
MovePrevious, 118, 140

N
NET command

service options, 44–45

O
ODBC, 1

pipe connections, 2, 35
OpenWorkarea, 112, 135

P
pausing the service, 44–45
pipes

properties
configuring, 34–40
deleting, 43–44
modifyng, 41–42

viewing, 43

R
refreshing the service, 24
requirements

installation prerequisites,
8

S
server

configuration
prerequisites, 18

configuring, 17–44
connecting to, 20–21
grace period, 149–50
installing, 10–11
requirements, 8
starting and stopping,

22–24, 44–45
service

connecting, 20
continuing, 45–46
license, 26–28
pausing, 44–45
refreshing the state of,

24
SQL parameters, 37
starting and stopping,

22–24, 44–45
status, 21
tracing, 25
tuning, 37–40

setting BPI options, 28–33
setting options

for licensing, 26–28
setting pipe options, 33–

44
setting service options,

21–25
SQL parameters, 37
starting

Configuration Tool, 18–
19

starting and stopping the
service, 44–45

syntax rules
for BPIs, 30–31

T
technical support, 5

ensuring with licensing,
26–28

tracing the service, 25
tuning

connection parameters,
37–40

V
variable-length column

selections, 61
variable-length columns

data handling of, 50–51

W
warning

stopping
service, 23–24

workarea
definition, 47

Notes

Notes

